Distributed Continuous-Time Nonsmooth Convex Optimization With Coupled Inequality Constraints

This paper studies distributed convex optimization problems over continuous-time multiagent networks subject to two types of constraints, i.e., local feasible set constraints and coupled inequality constraints, where all involved functions are not necessarily differentiable, only assumed to be conve...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control of network systems Vol. 7; no. 1; pp. 74 - 84
Main Authors Li, Xiuxian, Xie, Lihua, Hong, Yiguang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper studies distributed convex optimization problems over continuous-time multiagent networks subject to two types of constraints, i.e., local feasible set constraints and coupled inequality constraints, where all involved functions are not necessarily differentiable, only assumed to be convex. In order to solve this problem, a modified primal-dual continuous-time algorithm is proposed by projections on local feasible sets. With the aid of constructing a proper Lyapunov function candidate, the existence of solutions of the algorithm in the Carathéodory sense and the convergence of the algorithm to an optimal solution for the distributed optimization problem are established. Additionally, a sufficient condition is provided for making the algorithm fully distributed. Finally, the theoretical result is corroborated by a simulation example.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2325-5870
2372-2533
DOI:10.1109/TCNS.2019.2915626