Finite Position Set-Phase Locked Loop for Sensorless Control of Direct-Driven Permanent-Magnet Synchronous Generators

This paper presents a novel finite position set-phase locked loop (FPS-PLL) for sensorless control of surface-mounted permanent-magnet synchronous generators (PMSGs) in variable-speed wind turbines. The proposed FPS-PLL is based on the finite control set-model predictive control concept, where a fin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 33; no. 4; pp. 3097 - 3105
Main Authors Abdelrahem, Mohamed, Hackl, Christoph M., Kennel, Ralph
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a novel finite position set-phase locked loop (FPS-PLL) for sensorless control of surface-mounted permanent-magnet synchronous generators (PMSGs) in variable-speed wind turbines. The proposed FPS-PLL is based on the finite control set-model predictive control concept, where a finite number of rotor positions are used to estimate the back electromotive force of the PMSG. Then, the estimated rotor position, which minimizes a certain cost function, is selected to be the optimal rotor position. This eliminates the need of a fixed-gain proportional-integral controller, which is commonly utilized in the conventional PLL. The performance of the proposed FPS-PLL has been experimentally investigated and compared with that of the conventional one using a 14.5 kW PMSG with a field-oriented control scheme utilized as the generator control strategy. Furthermore, the robustness of the proposed FPS-PLL is investigated against PMSG parameters variations.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2017.2705245