A Hybrid Prediction Method for Realistic Network Traffic With Temporal Convolutional Network and LSTM

Accurate and real-time prediction of network traffic can not only help system operators allocate resources rationally according to their actual business needs but also help them assess the performance of a network and analyze its health status. In recent years, neural networks have been proved suita...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 19; no. 3; pp. 1 - 11
Main Authors Bi, Jing, Zhang, Xiang, Yuan, Haitao, Zhang, Jia, Zhou, MengChu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Accurate and real-time prediction of network traffic can not only help system operators allocate resources rationally according to their actual business needs but also help them assess the performance of a network and analyze its health status. In recent years, neural networks have been proved suitable to predict time series data, represented by the model of a long short-term memory (LSTM) neural network and a temporal convolutional network (TCN). This article proposes a novel hybrid prediction method named SG and TCN-based LSTM (ST-LSTM) for such network traffic prediction, which synergistically combines the power of the Savitzky-Golay (SG) filter, the TCN, as well as the LSTM. ST-LSTM employs a three-phase end-to-end methodology serving time series prediction. It first eliminates noise in raw data using the SG filter, then extracts short-term features from sequences applying the TCN, and then captures the long-term dependence in the data exploiting the LSTM. Experimental results over real-world datasets demonstrate that the proposed ST-LSTM outperforms state-of-the-art algorithms in terms of prediction accuracy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-5955
1558-3783
DOI:10.1109/TASE.2021.3077537