A Hybrid Prediction Method for Realistic Network Traffic With Temporal Convolutional Network and LSTM
Accurate and real-time prediction of network traffic can not only help system operators allocate resources rationally according to their actual business needs but also help them assess the performance of a network and analyze its health status. In recent years, neural networks have been proved suita...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 19; no. 3; pp. 1 - 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Accurate and real-time prediction of network traffic can not only help system operators allocate resources rationally according to their actual business needs but also help them assess the performance of a network and analyze its health status. In recent years, neural networks have been proved suitable to predict time series data, represented by the model of a long short-term memory (LSTM) neural network and a temporal convolutional network (TCN). This article proposes a novel hybrid prediction method named SG and TCN-based LSTM (ST-LSTM) for such network traffic prediction, which synergistically combines the power of the Savitzky-Golay (SG) filter, the TCN, as well as the LSTM. ST-LSTM employs a three-phase end-to-end methodology serving time series prediction. It first eliminates noise in raw data using the SG filter, then extracts short-term features from sequences applying the TCN, and then captures the long-term dependence in the data exploiting the LSTM. Experimental results over real-world datasets demonstrate that the proposed ST-LSTM outperforms state-of-the-art algorithms in terms of prediction accuracy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1545-5955 1558-3783 |
DOI: | 10.1109/TASE.2021.3077537 |