A Reconfigurable 3-D-Stacked SPAD Imager With In-Pixel Histogramming for Flash LIDAR or High-Speed Time-of-Flight Imaging

A 256 × 256 single-photon avalanche diode (SPAD) sensor integrated into a 3-D-stacked 90-nm 1P4M/40-nm 1P8M process is reported for flash light detection and ranging (LIDAR) or high-speed direct time-of-flight (ToF) 3-D imaging. The sensor bottom tier is composed of a 64 × 64 matrix of 36.72-μm pitc...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 54; no. 11; pp. 2947 - 2956
Main Authors Hutchings, Sam W., Johnston, Nick, Gyongy, Istvan, Al Abbas, Tarek, Dutton, Neale A. W., Tyler, Max, Chan, Susan, Leach, Jonathan, Henderson, Robert K.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A 256 × 256 single-photon avalanche diode (SPAD) sensor integrated into a 3-D-stacked 90-nm 1P4M/40-nm 1P8M process is reported for flash light detection and ranging (LIDAR) or high-speed direct time-of-flight (ToF) 3-D imaging. The sensor bottom tier is composed of a 64 × 64 matrix of 36.72-μm pitch modular photon processing units which operate from shared 4 × 4 SPADs at 9.18-μm pitch and 51% fill-factor. A 16 × 14 bit counter array integrates photon counts or events to compress data to 31.4 Mb/s at 30-frame/s readout over 8 I/O operating at 100 MHz. The pixel-parallel multi-event time-to-digital converter (TDC) approach employs a programmable internal or external clock for 0.56-560-ns time bin resolution. In conjunction with a per-pixel correlator, the power is reduced to less than 100 mW in practical daylight ranging scenarios. Examples of ranging and high-speed 3-D ToF applications are given.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2019.2939083