Data-Driven Wind Farm Control via Multiplayer Deep Reinforcement Learning

This brief proposes a novel data-driven control scheme to maximize the total power output of wind farms subject to strong aerodynamic interactions among wind turbines. The proposed method is model-free and has strong robustness, adaptability, and applicability. Particularly, distinct from the state-...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 31; no. 3; pp. 1468 - 1475
Main Authors Dong, Hongyang, Zhao, Xiaowei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This brief proposes a novel data-driven control scheme to maximize the total power output of wind farms subject to strong aerodynamic interactions among wind turbines. The proposed method is model-free and has strong robustness, adaptability, and applicability. Particularly, distinct from the state-of-the-art data-driven wind farm control methods that commonly use the steady-state or time-averaged data (such as turbines' power outputs under steady wind conditions or from steady-state models) to carry out learning, the proposed method directly mines in-depth the time-series data measured at turbine rotors under time-varying wind conditions to achieve farm-level power maximization. The control scheme is built on a novel multiplayer deep reinforcement learning method (MPDRL), in which a special critic-actor-distractor structure, along with deep neural networks (DNNs), is designed to handle the stochastic feature of wind speeds and learn optimal control policies subject to a user-defined performance metric. The effectiveness, robustness, and scalability of the proposed MPDRL-based wind farm control method are tested by prototypical case studies with a dynamic wind farm simulator (WFSim). Compared with the commonly used greedy strategy, the proposed method leads to clear increases in farm-level power generation in case studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2022.3223185