Efficient Distributed DNNs in the Mobile-Edge-Cloud Continuum

In the mobile-edge-cloud continuum, a plethora of heterogeneous data sources and computation-capable nodes are available. Such nodes can cooperate to perform a distributed learning task, aided by a learning controller (often located at the network edge). The controller is required to make decisions...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on networking Vol. 31; no. 4; pp. 1 - 15
Main Authors Malandrino, Francesco, Chiasserini, Carla Fabiana, di Giacomo, Giuseppe
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the mobile-edge-cloud continuum, a plethora of heterogeneous data sources and computation-capable nodes are available. Such nodes can cooperate to perform a distributed learning task, aided by a learning controller (often located at the network edge). The controller is required to make decisions concerning (i) data selection, i.e., which data sources to use; (ii) model selection, i.e., which machine learning model to adopt, and (iii) matching between the layers of the model and the available physical nodes. All these decisions influence each other, to a significant extent and often in counter-intuitive ways. In this paper, we formulate a problem addressing all of the above aspects and present a solution concept called RightTrain, aiming at making the aforementioned decisions in a joint manner, minimizing energy consumption subject to learning quality and latency constraints. RightTrain leverages an expanded-graph representation of the system and a delay-aware Steiner tree to obtain a provably near-optimal solution while keeping the time complexity low. Specifically, it runs in polynomial time and its decisions exhibit a competitive ratio of <inline-formula> <tex-math notation="LaTeX">2(1+\epsilon)</tex-math> </inline-formula>, outperforming state-of-the-art solutions by over 50%. Our approach is also validated through a real-world implementation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2022.3222640