Physicochemical, antibacterial and food preservation properties of active packaging films based on chitosan/ε-polylysine-grafted bacterial cellulose

To address the environmental and food contamination issues caused by plastics and microorganisms, antimicrobial films using natural polymers has attracted enormous attention. In this work, we proposed a green, convenient and fast approach to prepare antimicrobial films from chitosan (CS), bacterial...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 253; no. Pt 5; p. 127231
Main Authors Liao, Wenying, Liu, Xiaoli, Zhao, Qing, Lu, Zhanhui, Feng, Anqi, Sun, Xin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 31.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To address the environmental and food contamination issues caused by plastics and microorganisms, antimicrobial films using natural polymers has attracted enormous attention. In this work, we proposed a green, convenient and fast approach to prepare antimicrobial films from chitosan (CS), bacterial cellulose (BC) and ε-polylysine (ε-PL). The effects of different concentrations of ε-PL (0 %, 0.25 %, 0.5 %, 0.75 %, 1 %, w/v) on the physicochemical properties and antibacterial activity of composite films (CS-DABC-x%PL) were systematically investigated. Furthermore, a comprehensive comparison with purely physically mixed CS-BC-x%PL films provides a deeper understanding of the subject matter. Characterization tests of the films were conducted using scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results suggested that the incorporation of 0.5 % ε-PL reduced the water solubility of the composite film by 19.82 %, along with improved the tensile strength and thermal stability by 37.31 % and 28.54 %. As ε-PL concentration increased to 1 %, the antibacterial performance of the films gradually enhanced. Additionally, the CS-DABC-0.5%PL film demonstrated effectiveness in delaying the deterioration of tilapia. These findings imply that this novel green packaging material holds significant potential in food preservation due to its promising antibacterial properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2023.127231