Finite-Time Event-Triggered Control for Semi-Markovian Switching Cyber-Physical Systems With FDI Attacks and Applications
This paper addresses the finite-time event-triggered control problem for nonlinear semi-Markovian switching cyber-physical systems (S-MSCPSs) under false data injection (FDI) attacks. Compared with the traditional time-triggered mechanism, the proposed event-triggered scheme (ETS) can effectively av...
Saved in:
Published in | IEEE transactions on circuits and systems. I, Regular papers Vol. 68; no. 6; pp. 2665 - 2674 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper addresses the finite-time event-triggered control problem for nonlinear semi-Markovian switching cyber-physical systems (S-MSCPSs) under false data injection (FDI) attacks. Compared with the traditional time-triggered mechanism, the proposed event-triggered scheme (ETS) can effectively avoid network resource waste. Considering the network-induced delay in the modeling, a closed-loop system model with time delay is established in the unified framework. By the use of a mode-dependent piecewise Lyapunov-Krasovskii functional (LKF), stochastic finite-time stability (SFTS) criteria are established for the resultant closed-loop system. Then, some solvability conditions are established for the desired finite-time controller in light of a linear matrix inequality framework. Finally, an application example of vertical take-off and landing helicopter model (VTOLHM) is provided to demonstrate the effectiveness of the theoretical findings. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2021.3071341 |