Compressive Privacy Generative Adversarial Network
Machine learning as a service (MLaaS) has brought much convenience to our daily lives recently. However, the fact that the service is provided through cloud raises privacy leakage issues. In this work we propose the compressive privacy generative adversarial network (CPGAN), a data-driven adversaria...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 15; pp. 2499 - 2513 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning as a service (MLaaS) has brought much convenience to our daily lives recently. However, the fact that the service is provided through cloud raises privacy leakage issues. In this work we propose the compressive privacy generative adversarial network (CPGAN), a data-driven adversarial learning framework for generating compressing representations that retain utility comparable to state-of-the-art, with the additional feature of defending against reconstruction attack. This is achieved by applying adversarial learning scheme to the design of compression network (privatizer), whose utility/privacy performances are evaluated by the utility classifier and the adversary reconstructor, respectively. Experimental results demonstrate that CPGAN achieves better utility/privacy trade-off in comparison with the previous work, and is applicable to real-world large datasets. |
---|---|
AbstractList | Machine learning as a service (MLaaS) has brought much convenience to our daily lives recently. However, the fact that the service is provided through cloud raises privacy leakage issues. In this work we propose the compressive privacy generative adversarial network (CPGAN), a data-driven adversarial learning framework for generating compressing representations that retain utility comparable to state-of-the-art, with the additional feature of defending against reconstruction attack. This is achieved by applying adversarial learning scheme to the design of compression network (privatizer), whose utility/privacy performances are evaluated by the utility classifier and the adversary reconstructor, respectively. Experimental results demonstrate that CPGAN achieves better utility/privacy trade-off in comparison with the previous work, and is applicable to real-world large datasets. |
Author | Tseng, Bo-Wei Wu, Pei-Yuan |
Author_xml | – sequence: 1 givenname: Bo-Wei orcidid: 0000-0001-6136-7963 surname: Tseng fullname: Tseng, Bo-Wei organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan – sequence: 2 givenname: Pei-Yuan orcidid: 0000-0001-7860-3678 surname: Wu fullname: Wu, Pei-Yuan email: peiyuanwu@ntu.edu.tw organization: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan |
BookMark | eNp9kMFqAjEQhkOxULV9gNKL0PPaTJLNJkeRagVpC_UestlZiNVdm6wW395dFA899DIzDPPNP_MPSK-qKyTkEegYgOqX1WL2NWaU0THTUoFSN6QPaSoTSRn0rjXwOzKIcU2pECBVn7Bpvd0FjNEfcPQZ_MG642iOFQbbdK1JccAQbfB2M3rH5rcO3_fktrSbiA-XPCSr2etq-pYsP-aL6WSZOKZ5k-TUYV4InkvVRrQCMpEJVsqCQllkNoVCIEpNFXOMpsqVVnKdWyVkATznQ_J8XrsL9c8eY2PW9T5UraJhPBUSGNdZOwXnKRfqGAOWZhf81oajAWo6Z0znjOmcMRdnWib7wzjftO_WVROs3_xLPp1Jj4hXJaXbwxnwE9zIck4 |
CODEN | ITIFA6 |
CitedBy_id | crossref_primary_10_1002_spy2_469 crossref_primary_10_1007_s11235_024_01166_x crossref_primary_10_1016_j_jisa_2022_103204 crossref_primary_10_1016_j_cose_2022_102688 crossref_primary_10_1109_LCOMM_2023_3269768 crossref_primary_10_1109_TIFS_2023_3236180 crossref_primary_10_1145_3463475 crossref_primary_10_1051_sands_2022008 crossref_primary_10_1109_TAI_2024_3363670 crossref_primary_10_1109_TIFS_2022_3228753 crossref_primary_10_1109_TIFS_2022_3203320 crossref_primary_10_1016_j_image_2022_116891 crossref_primary_10_1007_s13735_020_00196_w crossref_primary_10_1155_2021_9979606 crossref_primary_10_1109_TIFS_2022_3140687 crossref_primary_10_1109_TIFS_2024_3388976 crossref_primary_10_1145_3459992 crossref_primary_10_1109_ACCESS_2023_3243473 crossref_primary_10_1109_TCSS_2022_3142078 |
Cites_doi | 10.1145/2660267.2660348 10.1109/CVPR.2016.90 10.1109/ICASSP.2017.7953386 10.1016/S0893-6080(98)00116-6 10.1007/978-3-540-79228-4_1 10.1109/CDC.2018.8619455 10.1109/IJCNN.2017.7966371 10.1109/MSP.2016.2616720 10.1109/Allerton.2012.6483382 10.1007/3-540-44581-1_27 10.1016/j.jfranklin.2017.07.002 10.1098/rsta.2018.0083 10.1109/TIFS.2017.2787987 10.1109/TKDE.2009.190 10.1145/2996460 10.1109/SP.2017.41 10.1109/TPAMI.2017.2738004 10.1109/CVPR.2015.7298682 10.1109/ITA.2016.7888175 10.1017/CBO9781139176224 10.3390/e19120656 10.1109/TIFS.2016.2594132 10.1002/wics.101 10.1145/2591796.2591883 10.1145/2810103.2813677 10.1098/rsta.1909.0016 10.1109/ROBIO.2017.8324596 10.1145/3183713.3197390 10.1109/ICASSP.2018.8462336 10.1109/TPAMI.2010.77 10.1162/neco.1992.4.6.863 10.1145/2976749.2978318 10.1109/ICCV.2015.425 10.1109/MNET.2018.1700447 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TIFS.2020.2968188 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1556-6021 |
EndPage | 2513 |
ExternalDocumentID | 10_1109_TIFS_2020_2968188 8963921 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST-107-2634-F-002-008-; MOST-108-2634-F-002-005- funderid: 10.13039/501100004663 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-b0cebd43b68d43ea4174742f6d01fd7a51d4ee69082c2058cfa639ba846d13b3 |
IEDL.DBID | RIE |
ISSN | 1556-6013 |
IngestDate | Sun Jun 29 16:13:32 EDT 2025 Tue Jul 01 02:34:15 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Wed Aug 27 02:41:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-b0cebd43b68d43ea4174742f6d01fd7a51d4ee69082c2058cfa639ba846d13b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7860-3678 0000-0001-6136-7963 |
PQID | 2354612397 |
PQPubID | 85506 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TIFS_2020_2968188 proquest_journals_2354612397 crossref_citationtrail_10_1109_TIFS_2020_2968188 ieee_primary_8963921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationTitleAbbrev | TIFS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 duchi (ref16) 2013 kwok (ref2) 2018 ref59 ref58 rahimi (ref50) 2007 ref11 ref54 ref10 ref17 ref18 nowozin (ref67) 2016 netzer (ref55) 2011 odena (ref38) 2017 hardt (ref13) 2014 dua (ref52) 2017 lecun (ref51) 2010 ref46 ref48 ref47 ref44 durugkar (ref43) 2016 yi (ref65) 2014 ref8 ref7 tripathy (ref34) 2017 chen (ref40) 2016 ref9 ref4 ref6 huang (ref19) 2018 ref5 nguyen (ref45) 2013 (ref53) 2020 chaudhuri (ref15) 2013; 14 ref35 ref37 ref30 ref33 hron (ref1) 2018 he (ref62) 2016 liu (ref36) 2019 arjovsky (ref41) 2017 alemi (ref27) 2017 edwards (ref32) 2016 kingma (ref70) 2014 arthur (ref3) 2010 zagoruyko (ref60) 2016 liu (ref39) 2017 ref68 ref24 ref23 ref26 abadi (ref61) 2015 ref69 ref25 ref64 ref63 ref22 williams (ref49) 2001 ref21 goodfellow (ref31) 2014 ref28 arjovsky (ref42) 2017 gastaldi (ref57) 2017 zhong (ref66) 2016 ref29 krizhevsky (ref56) 2009 gentry (ref20) 2009 chaudhuri (ref14) 2011; 12 ioffe (ref71) 2015 |
References_xml | – year: 2020 ident: ref53 publication-title: The mplab genki-4k database – ident: ref17 doi: 10.1145/2660267.2660348 – ident: ref68 doi: 10.1109/CVPR.2016.90 – ident: ref33 doi: 10.1109/ICASSP.2017.7953386 – year: 2017 ident: ref52 publication-title: UCI Machine Learning Repository – year: 2018 ident: ref2 publication-title: Cathay Pacific Faces Probe Over Massive Data Breach Technology News – year: 2011 ident: ref55 article-title: Reading digits in natural images with unsupervised feature learning publication-title: Proc NIPS Workshop on Deep Learning and Unsupervised Feature Learning – start-page: 214 year: 2017 ident: ref41 article-title: Wasserstein generative adversarial networks publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref69 doi: 10.1016/S0893-6080(98)00116-6 – ident: ref10 doi: 10.1007/978-3-540-79228-4_1 – ident: ref35 doi: 10.1109/CDC.2018.8619455 – year: 2015 ident: ref61 publication-title: TensorFlow Large-Scale Machine Learning on Heterogeneous Systems – start-page: 1 year: 2016 ident: ref60 article-title: Wide residual networks publication-title: Proc Brit Mach Vis Conf (BMVC) – start-page: 630 year: 2016 ident: ref62 article-title: Identity mappings in deep residual networks publication-title: Proc Eur Conf Comp Vis (ECCV) – start-page: 1 year: 2016 ident: ref66 article-title: Face attribute prediction using off-the-shelf CNN features publication-title: Proc Int Conf Biometrics (ICB) – year: 2019 ident: ref36 article-title: Better accuracy with quantified privacy: Representations learned via reconstructive adversarial network publication-title: arXiv 1901 08730 – ident: ref25 doi: 10.1109/IJCNN.2017.7966371 – ident: ref22 doi: 10.1109/MSP.2016.2616720 – start-page: 2861 year: 2014 ident: ref13 article-title: The noisy power method: A meta algorithm with applications publication-title: Proc Int Conf Neural Inf Process Syst (NIPS) – ident: ref29 doi: 10.1109/Allerton.2012.6483382 – year: 2017 ident: ref39 article-title: Unsupervised image-to-image translation networks publication-title: Proc Int Conf Neural Inf Process Syst (NIPS) – ident: ref48 doi: 10.1007/3-540-44581-1_27 – ident: ref24 doi: 10.1016/j.jfranklin.2017.07.002 – start-page: 429 year: 2013 ident: ref16 article-title: Local privacy and statistical minimax rates publication-title: Proc Annu IEEE Symp Foundations Comput Sci – start-page: 1177 year: 2007 ident: ref50 article-title: Random features for large-scale kernel machines publication-title: Proc Int Conf Neural Inf Process Syst (NIPS) – ident: ref5 doi: 10.1098/rsta.2018.0083 – start-page: 2172 year: 2016 ident: ref40 article-title: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets publication-title: Proc Int Conf Neural Inf Process Syst (NIPS) – ident: ref21 doi: 10.1109/TIFS.2017.2787987 – ident: ref28 doi: 10.1109/TKDE.2009.190 – ident: ref23 doi: 10.1145/2996460 – year: 2017 ident: ref57 article-title: Shake-shake regularization publication-title: arXiv 1705 07485 – ident: ref9 doi: 10.1109/SP.2017.41 – volume: 12 start-page: 1069 year: 2011 ident: ref14 article-title: Differentially private empirical risk minimization publication-title: J Mach Learn Res – year: 2010 ident: ref3 publication-title: Businesses Unwilling to Share Data But Keen On Government Doing It The Guardian – ident: ref64 doi: 10.1109/TPAMI.2017.2738004 – year: 2018 ident: ref1 publication-title: Top 10 Biggest Data Breaches in 2018 – year: 2014 ident: ref65 article-title: Learning face representation from scratch publication-title: arXiv 1411 7923 – ident: ref59 doi: 10.1109/CVPR.2015.7298682 – start-page: 1 year: 2015 ident: ref71 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref30 doi: 10.1109/ITA.2016.7888175 – year: 2009 ident: ref56 article-title: Learning multiple layers of features from tiny images – year: 2010 ident: ref51 publication-title: MNIST Handwritten Digit Database – start-page: 2672 year: 2014 ident: ref31 article-title: Generative adversarial nets publication-title: Proc Int Conf Neural Inf Process Syst (NIPS) – ident: ref46 doi: 10.1017/CBO9781139176224 – ident: ref44 doi: 10.3390/e19120656 – ident: ref8 doi: 10.1109/TIFS.2016.2594132 – start-page: 1 year: 2016 ident: ref43 article-title: Generative multi-adversarial networks publication-title: Proc Int Conf Learn Represent (ICLR) – start-page: 271 year: 2016 ident: ref67 article-title: F-GAN: Training generative neural samplers using variational divergence minimization publication-title: Proc Adv Neural Inf Process Syst – volume: 14 start-page: 2905 year: 2013 ident: ref15 article-title: A near-optimal algorithm for differentially-private principal components publication-title: J Mach Learn Res – year: 2018 ident: ref19 article-title: Generative adversarial privacy publication-title: arXiv 1807 05306 – start-page: 2642 year: 2017 ident: ref38 article-title: Conditional image synthesis with auxiliary classifier GANs publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref54 doi: 10.1002/wics.101 – ident: ref11 doi: 10.1145/2591796.2591883 – ident: ref6 doi: 10.1145/2810103.2813677 – ident: ref47 doi: 10.1098/rsta.1909.0016 – start-page: 1085 year: 2013 ident: ref45 article-title: Algorithms for direct 0-1 loss optimization in binary classification publication-title: Proc Int Conf Int Conf Mach Learn (ICML) – ident: ref63 doi: 10.1109/ROBIO.2017.8324596 – year: 2009 ident: ref20 article-title: A fully homomorphic encryption scheme – start-page: 1 year: 2014 ident: ref70 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref18 doi: 10.1145/3183713.3197390 – start-page: 682 year: 2001 ident: ref49 article-title: Using the Nystr"om method to speed up kernel machines publication-title: Proc Int Conf Neural Inf Process System (NIPS) – ident: ref26 doi: 10.1109/ICASSP.2018.8462336 – ident: ref7 doi: 10.1109/TPAMI.2010.77 – ident: ref37 doi: 10.1162/neco.1992.4.6.863 – ident: ref12 doi: 10.1145/2976749.2978318 – start-page: 1 year: 2017 ident: ref27 article-title: Deep variational information bottleneck publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref58 doi: 10.1109/ICCV.2015.425 – ident: ref4 doi: 10.1109/MNET.2018.1700447 – year: 2017 ident: ref34 article-title: Privacy-preserving adversarial networks publication-title: arXiv 1712 07008 – start-page: 1 year: 2016 ident: ref32 article-title: Censoring representations with an adversary publication-title: Proc Int Conf Learn Represent (ICLR) – year: 2017 ident: ref42 article-title: Towards principled methods for training generative adversarial networks publication-title: Proc Int Conf Learn Represent (ICLR) |
SSID | ssj0044168 |
Score | 2.4022458 |
Snippet | Machine learning as a service (MLaaS) has brought much convenience to our daily lives recently. However, the fact that the service is provided through cloud... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2499 |
SubjectTerms | adversarial learning Compression tests Compressive privacy cyber security Data models Data privacy Feature extraction Generative adversarial networks Machine learning machine learning as a service Privacy privacy preserving machine learning Privatization Stochastic processes |
Title | Compressive Privacy Generative Adversarial Network |
URI | https://ieeexplore.ieee.org/document/8963921 https://www.proquest.com/docview/2354612397 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3qw2ipWq-TgSUybx24eRxFLFVoEK_QW9jEBUVrpC_TXO7tJii_ES8hhNxlmZndmdmfmAziXkpzaWGg3ZgxdsrfalaRJbu5LzWPkKCwYzHAUDR7Z3YRPanC5qYVBRJt8hl3zau_y9UytzFFZLyFtSU3V-BYFbkWtVrXr0l-KsjfOI5eCjLC8wfS9tDe-7T9QJBh43SCNyEAlX2yQBVX5sRNb89JvwLAirMgqee6ulrKr3r_1bPwv5XuwW_qZzlWhGPtQw2kTGhWGg1Mu6SbsfGpI2ILADLCZsWt07udPa6HenKIztdkWHQvfvBBGaZ1RkUB-AOP-zfh64JaoCq4i074kUSiUmoUySuiJglFMQvFxHmnPz3UsuK8ZYmSg0FXg8UTlgmiXghwV7YcyPIT6dDbFI3Aw5aiZELnAnLwyJpnw0oSkHHKmQh61wavYnKmy47gBvnjJbOThpZmRTGYkk5WSacPFZspr0W7jr8Etw-nNwJLJbehUsszKBbnIAqLJdJpJ4-PfZ53Atvl2cbrSgfpyvsJT8jeW8swq2gfTC9D8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5ED-rBqlWsVt2DJ3HrPpJ9HEUs9dEiWKG3JY9ZEKWK3Rb01zvJ7hZfiJdlDwkZMpN5JDPzARxJSU5tLLQbM4Yu2VvtSpIkN_el5jFyFBYMpj-IevfsasRHC3Ayr4VBRJt8hh3za9_y9bOamquy04SkJTVV40tk97lfVmvVepfWKQvfOI9cCjPC6g3T99LT4WX3jmLBwOsEaUQmKvlihSysyg9dbA1MtwH9mrQyr-SxMy1kR71_69r4X9rXYa3yNJ2zUjQ2YAHHm9CoURyc6lBvwuqnloRNCMwAmxs7Q-f29WEm1JtT9qY2itGxAM4TYcTWGZQp5Fsw7F4Mz3tuhavgKjLuBTFDodQslFFCXxSMohKKkPNIe36uY8F9zRAjA4auAo8nKhdEuxTkqmg_lOE2LI6fx7gDDqYcNRMiF5iTX8YkE16aEJ9DzlTIoxZ49TZnquo5bqAvnjIbe3hpZjiTGc5kFWdacDyf8lI23PhrcNPs9HxgtcktaNe8zKojOckCosn0mknj3d9nHcJyb9i_yW4uB9d7sGLWKe9a2rBYvE5xn7yPQh5YofsA5ofURQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressive+Privacy+Generative+Adversarial+Network&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Tseng%2C+Bo-Wei&rft.au=Wu%2C+Pei-Yuan&rft.date=2020&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=15&rft.spage=2499&rft.epage=2513&rft_id=info:doi/10.1109%2FTIFS.2020.2968188&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2020_2968188 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |