Compressive Privacy Generative Adversarial Network

Machine learning as a service (MLaaS) has brought much convenience to our daily lives recently. However, the fact that the service is provided through cloud raises privacy leakage issues. In this work we propose the compressive privacy generative adversarial network (CPGAN), a data-driven adversaria...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 15; pp. 2499 - 2513
Main Authors Tseng, Bo-Wei, Wu, Pei-Yuan
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning as a service (MLaaS) has brought much convenience to our daily lives recently. However, the fact that the service is provided through cloud raises privacy leakage issues. In this work we propose the compressive privacy generative adversarial network (CPGAN), a data-driven adversarial learning framework for generating compressing representations that retain utility comparable to state-of-the-art, with the additional feature of defending against reconstruction attack. This is achieved by applying adversarial learning scheme to the design of compression network (privatizer), whose utility/privacy performances are evaluated by the utility classifier and the adversary reconstructor, respectively. Experimental results demonstrate that CPGAN achieves better utility/privacy trade-off in comparison with the previous work, and is applicable to real-world large datasets.
AbstractList Machine learning as a service (MLaaS) has brought much convenience to our daily lives recently. However, the fact that the service is provided through cloud raises privacy leakage issues. In this work we propose the compressive privacy generative adversarial network (CPGAN), a data-driven adversarial learning framework for generating compressing representations that retain utility comparable to state-of-the-art, with the additional feature of defending against reconstruction attack. This is achieved by applying adversarial learning scheme to the design of compression network (privatizer), whose utility/privacy performances are evaluated by the utility classifier and the adversary reconstructor, respectively. Experimental results demonstrate that CPGAN achieves better utility/privacy trade-off in comparison with the previous work, and is applicable to real-world large datasets.
Author Tseng, Bo-Wei
Wu, Pei-Yuan
Author_xml – sequence: 1
  givenname: Bo-Wei
  orcidid: 0000-0001-6136-7963
  surname: Tseng
  fullname: Tseng, Bo-Wei
  organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 2
  givenname: Pei-Yuan
  orcidid: 0000-0001-7860-3678
  surname: Wu
  fullname: Wu, Pei-Yuan
  email: peiyuanwu@ntu.edu.tw
  organization: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
BookMark eNp9kMFqAjEQhkOxULV9gNKL0PPaTJLNJkeRagVpC_UestlZiNVdm6wW395dFA899DIzDPPNP_MPSK-qKyTkEegYgOqX1WL2NWaU0THTUoFSN6QPaSoTSRn0rjXwOzKIcU2pECBVn7Bpvd0FjNEfcPQZ_MG642iOFQbbdK1JccAQbfB2M3rH5rcO3_fktrSbiA-XPCSr2etq-pYsP-aL6WSZOKZ5k-TUYV4InkvVRrQCMpEJVsqCQllkNoVCIEpNFXOMpsqVVnKdWyVkATznQ_J8XrsL9c8eY2PW9T5UraJhPBUSGNdZOwXnKRfqGAOWZhf81oajAWo6Z0znjOmcMRdnWib7wzjftO_WVROs3_xLPp1Jj4hXJaXbwxnwE9zIck4
CODEN ITIFA6
CitedBy_id crossref_primary_10_1002_spy2_469
crossref_primary_10_1007_s11235_024_01166_x
crossref_primary_10_1016_j_jisa_2022_103204
crossref_primary_10_1016_j_cose_2022_102688
crossref_primary_10_1109_LCOMM_2023_3269768
crossref_primary_10_1109_TIFS_2023_3236180
crossref_primary_10_1145_3463475
crossref_primary_10_1051_sands_2022008
crossref_primary_10_1109_TAI_2024_3363670
crossref_primary_10_1109_TIFS_2022_3228753
crossref_primary_10_1109_TIFS_2022_3203320
crossref_primary_10_1016_j_image_2022_116891
crossref_primary_10_1007_s13735_020_00196_w
crossref_primary_10_1155_2021_9979606
crossref_primary_10_1109_TIFS_2022_3140687
crossref_primary_10_1109_TIFS_2024_3388976
crossref_primary_10_1145_3459992
crossref_primary_10_1109_ACCESS_2023_3243473
crossref_primary_10_1109_TCSS_2022_3142078
Cites_doi 10.1145/2660267.2660348
10.1109/CVPR.2016.90
10.1109/ICASSP.2017.7953386
10.1016/S0893-6080(98)00116-6
10.1007/978-3-540-79228-4_1
10.1109/CDC.2018.8619455
10.1109/IJCNN.2017.7966371
10.1109/MSP.2016.2616720
10.1109/Allerton.2012.6483382
10.1007/3-540-44581-1_27
10.1016/j.jfranklin.2017.07.002
10.1098/rsta.2018.0083
10.1109/TIFS.2017.2787987
10.1109/TKDE.2009.190
10.1145/2996460
10.1109/SP.2017.41
10.1109/TPAMI.2017.2738004
10.1109/CVPR.2015.7298682
10.1109/ITA.2016.7888175
10.1017/CBO9781139176224
10.3390/e19120656
10.1109/TIFS.2016.2594132
10.1002/wics.101
10.1145/2591796.2591883
10.1145/2810103.2813677
10.1098/rsta.1909.0016
10.1109/ROBIO.2017.8324596
10.1145/3183713.3197390
10.1109/ICASSP.2018.8462336
10.1109/TPAMI.2010.77
10.1162/neco.1992.4.6.863
10.1145/2976749.2978318
10.1109/ICCV.2015.425
10.1109/MNET.2018.1700447
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2020.2968188
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 2513
ExternalDocumentID 10_1109_TIFS_2020_2968188
8963921
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST-107-2634-F-002-008-; MOST-108-2634-F-002-005-
  funderid: 10.13039/501100004663
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-b0cebd43b68d43ea4174742f6d01fd7a51d4ee69082c2058cfa639ba846d13b3
IEDL.DBID RIE
ISSN 1556-6013
IngestDate Sun Jun 29 16:13:32 EDT 2025
Tue Jul 01 02:34:15 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Wed Aug 27 02:41:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b0cebd43b68d43ea4174742f6d01fd7a51d4ee69082c2058cfa639ba846d13b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7860-3678
0000-0001-6136-7963
PQID 2354612397
PQPubID 85506
PageCount 15
ParticipantIDs crossref_primary_10_1109_TIFS_2020_2968188
proquest_journals_2354612397
crossref_citationtrail_10_1109_TIFS_2020_2968188
ieee_primary_8963921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
duchi (ref16) 2013
kwok (ref2) 2018
ref59
ref58
rahimi (ref50) 2007
ref11
ref54
ref10
ref17
ref18
nowozin (ref67) 2016
netzer (ref55) 2011
odena (ref38) 2017
hardt (ref13) 2014
dua (ref52) 2017
lecun (ref51) 2010
ref46
ref48
ref47
ref44
durugkar (ref43) 2016
yi (ref65) 2014
ref8
ref7
tripathy (ref34) 2017
chen (ref40) 2016
ref9
ref4
ref6
huang (ref19) 2018
ref5
nguyen (ref45) 2013
(ref53) 2020
chaudhuri (ref15) 2013; 14
ref35
ref37
ref30
ref33
hron (ref1) 2018
he (ref62) 2016
liu (ref36) 2019
arjovsky (ref41) 2017
alemi (ref27) 2017
edwards (ref32) 2016
kingma (ref70) 2014
arthur (ref3) 2010
zagoruyko (ref60) 2016
liu (ref39) 2017
ref68
ref24
ref23
ref26
abadi (ref61) 2015
ref69
ref25
ref64
ref63
ref22
williams (ref49) 2001
ref21
goodfellow (ref31) 2014
ref28
arjovsky (ref42) 2017
gastaldi (ref57) 2017
zhong (ref66) 2016
ref29
krizhevsky (ref56) 2009
gentry (ref20) 2009
chaudhuri (ref14) 2011; 12
ioffe (ref71) 2015
References_xml – year: 2020
  ident: ref53
  publication-title: The mplab genki-4k database
– ident: ref17
  doi: 10.1145/2660267.2660348
– ident: ref68
  doi: 10.1109/CVPR.2016.90
– ident: ref33
  doi: 10.1109/ICASSP.2017.7953386
– year: 2017
  ident: ref52
  publication-title: UCI Machine Learning Repository
– year: 2018
  ident: ref2
  publication-title: Cathay Pacific Faces Probe Over Massive Data Breach Technology News
– year: 2011
  ident: ref55
  article-title: Reading digits in natural images with unsupervised feature learning
  publication-title: Proc NIPS Workshop on Deep Learning and Unsupervised Feature Learning
– start-page: 214
  year: 2017
  ident: ref41
  article-title: Wasserstein generative adversarial networks
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref69
  doi: 10.1016/S0893-6080(98)00116-6
– ident: ref10
  doi: 10.1007/978-3-540-79228-4_1
– ident: ref35
  doi: 10.1109/CDC.2018.8619455
– year: 2015
  ident: ref61
  publication-title: TensorFlow Large-Scale Machine Learning on Heterogeneous Systems
– start-page: 1
  year: 2016
  ident: ref60
  article-title: Wide residual networks
  publication-title: Proc Brit Mach Vis Conf (BMVC)
– start-page: 630
  year: 2016
  ident: ref62
  article-title: Identity mappings in deep residual networks
  publication-title: Proc Eur Conf Comp Vis (ECCV)
– start-page: 1
  year: 2016
  ident: ref66
  article-title: Face attribute prediction using off-the-shelf CNN features
  publication-title: Proc Int Conf Biometrics (ICB)
– year: 2019
  ident: ref36
  article-title: Better accuracy with quantified privacy: Representations learned via reconstructive adversarial network
  publication-title: arXiv 1901 08730
– ident: ref25
  doi: 10.1109/IJCNN.2017.7966371
– ident: ref22
  doi: 10.1109/MSP.2016.2616720
– start-page: 2861
  year: 2014
  ident: ref13
  article-title: The noisy power method: A meta algorithm with applications
  publication-title: Proc Int Conf Neural Inf Process Syst (NIPS)
– ident: ref29
  doi: 10.1109/Allerton.2012.6483382
– year: 2017
  ident: ref39
  article-title: Unsupervised image-to-image translation networks
  publication-title: Proc Int Conf Neural Inf Process Syst (NIPS)
– ident: ref48
  doi: 10.1007/3-540-44581-1_27
– ident: ref24
  doi: 10.1016/j.jfranklin.2017.07.002
– start-page: 429
  year: 2013
  ident: ref16
  article-title: Local privacy and statistical minimax rates
  publication-title: Proc Annu IEEE Symp Foundations Comput Sci
– start-page: 1177
  year: 2007
  ident: ref50
  article-title: Random features for large-scale kernel machines
  publication-title: Proc Int Conf Neural Inf Process Syst (NIPS)
– ident: ref5
  doi: 10.1098/rsta.2018.0083
– start-page: 2172
  year: 2016
  ident: ref40
  article-title: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Proc Int Conf Neural Inf Process Syst (NIPS)
– ident: ref21
  doi: 10.1109/TIFS.2017.2787987
– ident: ref28
  doi: 10.1109/TKDE.2009.190
– ident: ref23
  doi: 10.1145/2996460
– year: 2017
  ident: ref57
  article-title: Shake-shake regularization
  publication-title: arXiv 1705 07485
– ident: ref9
  doi: 10.1109/SP.2017.41
– volume: 12
  start-page: 1069
  year: 2011
  ident: ref14
  article-title: Differentially private empirical risk minimization
  publication-title: J Mach Learn Res
– year: 2010
  ident: ref3
  publication-title: Businesses Unwilling to Share Data But Keen On Government Doing It The Guardian
– ident: ref64
  doi: 10.1109/TPAMI.2017.2738004
– year: 2018
  ident: ref1
  publication-title: Top 10 Biggest Data Breaches in 2018
– year: 2014
  ident: ref65
  article-title: Learning face representation from scratch
  publication-title: arXiv 1411 7923
– ident: ref59
  doi: 10.1109/CVPR.2015.7298682
– start-page: 1
  year: 2015
  ident: ref71
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref30
  doi: 10.1109/ITA.2016.7888175
– year: 2009
  ident: ref56
  article-title: Learning multiple layers of features from tiny images
– year: 2010
  ident: ref51
  publication-title: MNIST Handwritten Digit Database
– start-page: 2672
  year: 2014
  ident: ref31
  article-title: Generative adversarial nets
  publication-title: Proc Int Conf Neural Inf Process Syst (NIPS)
– ident: ref46
  doi: 10.1017/CBO9781139176224
– ident: ref44
  doi: 10.3390/e19120656
– ident: ref8
  doi: 10.1109/TIFS.2016.2594132
– start-page: 1
  year: 2016
  ident: ref43
  article-title: Generative multi-adversarial networks
  publication-title: Proc Int Conf Learn Represent (ICLR)
– start-page: 271
  year: 2016
  ident: ref67
  article-title: F-GAN: Training generative neural samplers using variational divergence minimization
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 14
  start-page: 2905
  year: 2013
  ident: ref15
  article-title: A near-optimal algorithm for differentially-private principal components
  publication-title: J Mach Learn Res
– year: 2018
  ident: ref19
  article-title: Generative adversarial privacy
  publication-title: arXiv 1807 05306
– start-page: 2642
  year: 2017
  ident: ref38
  article-title: Conditional image synthesis with auxiliary classifier GANs
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref54
  doi: 10.1002/wics.101
– ident: ref11
  doi: 10.1145/2591796.2591883
– ident: ref6
  doi: 10.1145/2810103.2813677
– ident: ref47
  doi: 10.1098/rsta.1909.0016
– start-page: 1085
  year: 2013
  ident: ref45
  article-title: Algorithms for direct 0-1 loss optimization in binary classification
  publication-title: Proc Int Conf Int Conf Mach Learn (ICML)
– ident: ref63
  doi: 10.1109/ROBIO.2017.8324596
– year: 2009
  ident: ref20
  article-title: A fully homomorphic encryption scheme
– start-page: 1
  year: 2014
  ident: ref70
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref18
  doi: 10.1145/3183713.3197390
– start-page: 682
  year: 2001
  ident: ref49
  article-title: Using the Nystr"om method to speed up kernel machines
  publication-title: Proc Int Conf Neural Inf Process System (NIPS)
– ident: ref26
  doi: 10.1109/ICASSP.2018.8462336
– ident: ref7
  doi: 10.1109/TPAMI.2010.77
– ident: ref37
  doi: 10.1162/neco.1992.4.6.863
– ident: ref12
  doi: 10.1145/2976749.2978318
– start-page: 1
  year: 2017
  ident: ref27
  article-title: Deep variational information bottleneck
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref58
  doi: 10.1109/ICCV.2015.425
– ident: ref4
  doi: 10.1109/MNET.2018.1700447
– year: 2017
  ident: ref34
  article-title: Privacy-preserving adversarial networks
  publication-title: arXiv 1712 07008
– start-page: 1
  year: 2016
  ident: ref32
  article-title: Censoring representations with an adversary
  publication-title: Proc Int Conf Learn Represent (ICLR)
– year: 2017
  ident: ref42
  article-title: Towards principled methods for training generative adversarial networks
  publication-title: Proc Int Conf Learn Represent (ICLR)
SSID ssj0044168
Score 2.4022458
Snippet Machine learning as a service (MLaaS) has brought much convenience to our daily lives recently. However, the fact that the service is provided through cloud...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2499
SubjectTerms adversarial learning
Compression tests
Compressive privacy
cyber security
Data models
Data privacy
Feature extraction
Generative adversarial networks
Machine learning
machine learning as a service
Privacy
privacy preserving machine learning
Privatization
Stochastic processes
Title Compressive Privacy Generative Adversarial Network
URI https://ieeexplore.ieee.org/document/8963921
https://www.proquest.com/docview/2354612397
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3qw2ipWq-TgSUybx24eRxFLFVoEK_QW9jEBUVrpC_TXO7tJii_ES8hhNxlmZndmdmfmAziXkpzaWGg3ZgxdsrfalaRJbu5LzWPkKCwYzHAUDR7Z3YRPanC5qYVBRJt8hl3zau_y9UytzFFZLyFtSU3V-BYFbkWtVrXr0l-KsjfOI5eCjLC8wfS9tDe-7T9QJBh43SCNyEAlX2yQBVX5sRNb89JvwLAirMgqee6ulrKr3r_1bPwv5XuwW_qZzlWhGPtQw2kTGhWGg1Mu6SbsfGpI2ILADLCZsWt07udPa6HenKIztdkWHQvfvBBGaZ1RkUB-AOP-zfh64JaoCq4i074kUSiUmoUySuiJglFMQvFxHmnPz3UsuK8ZYmSg0FXg8UTlgmiXghwV7YcyPIT6dDbFI3Aw5aiZELnAnLwyJpnw0oSkHHKmQh61wavYnKmy47gBvnjJbOThpZmRTGYkk5WSacPFZspr0W7jr8Etw-nNwJLJbehUsszKBbnIAqLJdJpJ4-PfZ53Atvl2cbrSgfpyvsJT8jeW8swq2gfTC9D8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5ED-rBqlWsVt2DJ3HrPpJ9HEUs9dEiWKG3JY9ZEKWK3Rb01zvJ7hZfiJdlDwkZMpN5JDPzARxJSU5tLLQbM4Yu2VvtSpIkN_el5jFyFBYMpj-IevfsasRHC3Ayr4VBRJt8hh3za9_y9bOamquy04SkJTVV40tk97lfVmvVepfWKQvfOI9cCjPC6g3T99LT4WX3jmLBwOsEaUQmKvlihSysyg9dbA1MtwH9mrQyr-SxMy1kR71_69r4X9rXYa3yNJ2zUjQ2YAHHm9CoURyc6lBvwuqnloRNCMwAmxs7Q-f29WEm1JtT9qY2itGxAM4TYcTWGZQp5Fsw7F4Mz3tuhavgKjLuBTFDodQslFFCXxSMohKKkPNIe36uY8F9zRAjA4auAo8nKhdEuxTkqmg_lOE2LI6fx7gDDqYcNRMiF5iTX8YkE16aEJ9DzlTIoxZ49TZnquo5bqAvnjIbe3hpZjiTGc5kFWdacDyf8lI23PhrcNPs9HxgtcktaNe8zKojOckCosn0mknj3d9nHcJyb9i_yW4uB9d7sGLWKe9a2rBYvE5xn7yPQh5YofsA5ofURQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressive+Privacy+Generative+Adversarial+Network&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Tseng%2C+Bo-Wei&rft.au=Wu%2C+Pei-Yuan&rft.date=2020&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=15&rft.spage=2499&rft.epage=2513&rft_id=info:doi/10.1109%2FTIFS.2020.2968188&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2020_2968188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon