Compressive Privacy Generative Adversarial Network

Machine learning as a service (MLaaS) has brought much convenience to our daily lives recently. However, the fact that the service is provided through cloud raises privacy leakage issues. In this work we propose the compressive privacy generative adversarial network (CPGAN), a data-driven adversaria...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 15; pp. 2499 - 2513
Main Authors Tseng, Bo-Wei, Wu, Pei-Yuan
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Machine learning as a service (MLaaS) has brought much convenience to our daily lives recently. However, the fact that the service is provided through cloud raises privacy leakage issues. In this work we propose the compressive privacy generative adversarial network (CPGAN), a data-driven adversarial learning framework for generating compressing representations that retain utility comparable to state-of-the-art, with the additional feature of defending against reconstruction attack. This is achieved by applying adversarial learning scheme to the design of compression network (privatizer), whose utility/privacy performances are evaluated by the utility classifier and the adversary reconstructor, respectively. Experimental results demonstrate that CPGAN achieves better utility/privacy trade-off in comparison with the previous work, and is applicable to real-world large datasets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2020.2968188