Optimal Complexity Architectures for Pipelined Distributed Arithmetic-Based LMS Adaptive Filter

This paper presents three optimal-complexity structures (I, II, III) for pipelined distributed arithmetic (DA) based least-mean-square (LMS) adaptive filter. The complexity of proposed structures is reduced by implementing offset-binary-coding (OBC) combinations of input samples on hardware. However...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. I, Regular papers Vol. 66; no. 2; pp. 630 - 642
Main Authors Khan, Mohd. Tasleem, Shaik, Rafi Ahamed
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents three optimal-complexity structures (I, II, III) for pipelined distributed arithmetic (DA) based least-mean-square (LMS) adaptive filter. The complexity of proposed structures is reduced by implementing offset-binary-coding (OBC) combinations of input samples on hardware. However, some non-OBC outputs are produced, and subsequently eliminated in the error computation during the initial clock cycles. For achieving more performance benefits, radix-4 OBC combinations of input samples are implemented with the proposed partial product generators. In addition, novel low-complexity implementations for the offset term, weight update block and shift-accumulate unit are also proposed. Analysis shows that byte-complexity of proposed structures vary linearly with the order of DA base unit, while their bit-complexity depends on the topology. All the structures show significant hardware savings, Structure-I has least critical-path and Structure-II, III offer superior convergence performance. Experimental results show that the Structure-I, II and III with 32 nd order filter provide savings 71.13%, 71.83% and 73.08% in area, 68.47%, 70.01% and 72.17% in power, 51.74%, 37.83% and 45.38% in area-per-throughput (APT), 47.33%, 33.72% and 43.19% in power-per-throughput (PPT), 55.11%, 59.66% and 64.20% in slice LUTs, 35.33%, 40.28% and 44.87% in flip-flops over the best existing scheme.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2018.2867291