MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles
In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 26; no. 1; pp. 274 - 281 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and compliance control are important to realize different training strategies and modes for improving the effectiveness of the rehabilitation robots. This paper presents a multi-input-multioutput sliding mode controller, which is developed to simultaneously control the angular trajectory and compliance of the knee joint mechanism of a gait rehabilitation exoskeleton. Experimental results indicate good multivariable tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2017.2654424 |