An AWID and AWIS X-By-Wire UGV: Design and Hierarchical Chassis Dynamics Control

In this paper, an all-wheel independently driven and all-wheel independently steered unmanned ground vehicle (UGV) is described. This paper investigates the hierarchical chassis yaw dynamics control (CYDC) and the tyre force control of the UGV in the remote control mode (RCM). The hierarchical CYDC...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 20; no. 2; pp. 654 - 666
Main Authors Ni, Jun, Hu, Jibin, Xiang, Changle
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, an all-wheel independently driven and all-wheel independently steered unmanned ground vehicle (UGV) is described. This paper investigates the hierarchical chassis yaw dynamics control (CYDC) and the tyre force control of the UGV in the remote control mode (RCM). The hierarchical CYDC scheme in RCM is proposed. As the key part in the control scheme, a yaw moment controller is proposed to deal with the oversteer problem of the UGV. Through the robust-based pole placement technique, the ideal poles' zones of the lateral UGV dynamics system are able to be tuned to meet different dynamics behavior requirements in different UGV tasks. The robust state feedback yaw dynamics controller is investigated based on the linear matrix inequalities approach. It considers the unavoidable parametric disturbance and uncertainty, such as the variation of the UGV's mass, yaw inertia, and tyre-road characteristics. In addition, in order to improve its performance in off-road conditions, the tyre traction force distribution algorithm and sliding mode wheel slip controller are designed to negotiate uneven terrains. The experiments in paved and off-road conditions are conducted to demonstrate the performance of the proposed controller.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2018.2824346