Toward Graphene-Based Passive UHF RFID Textile Tags: A Reliability Study

This paper discusses the fabrication, wireless performance, and reliability of graphene-based passive ultrahigh-frequency radio-frequency identification (RFID) tags on a fabric substrate. The conductive ink comprising functionalized graphene nanoplatelets is deposited directly on a cotton fabric sub...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on device and materials reliability Vol. 16; no. 3; pp. 429 - 431
Main Authors Akbari, M., Virkki, J., Sydanheimo, L., Ukkonen, L.
Format Magazine Article
LanguageEnglish
Published New York IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper discusses the fabrication, wireless performance, and reliability of graphene-based passive ultrahigh-frequency radio-frequency identification (RFID) tags on a fabric substrate. The conductive ink comprising functionalized graphene nanoplatelets is deposited directly on a cotton fabric substrate to fabricate the tag antennas. After attaching the chips, the tag performance is evaluated through wireless tag measurements before and after high-humidity conditions, bending, and stretching. Initially, the peak read range of the tag is about 1.6 m, which increases to 3.2 m in 100% humidity conditions. Additionally, after drying, the performance of the tag returns back to normal. In a bending test, the read range of a bent tag decreases below 1 m. Furthermore, the read range of the tag in a nonbended state gradually decreases and is about 1.1 m after 100 bending cycles. According to our measurements, stretching has a serious detrimental effect on these tags and they cannot be considered stretchable. However, these initial results show that this low-cost and eco-friendly graphene RFID tag has a remarkable and unique response to moisture and high reliability in harsh bending conditions. Overall, it also has a strong potential to be used in future wearable sensor applications.
ISSN:1530-4388
1558-2574
DOI:10.1109/TDMR.2016.2582261