Toward Graphene-Based Passive UHF RFID Textile Tags: A Reliability Study
This paper discusses the fabrication, wireless performance, and reliability of graphene-based passive ultrahigh-frequency radio-frequency identification (RFID) tags on a fabric substrate. The conductive ink comprising functionalized graphene nanoplatelets is deposited directly on a cotton fabric sub...
Saved in:
Published in | IEEE transactions on device and materials reliability Vol. 16; no. 3; pp. 429 - 431 |
---|---|
Main Authors | , , , |
Format | Magazine Article |
Language | English |
Published |
New York
IEEE
01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper discusses the fabrication, wireless performance, and reliability of graphene-based passive ultrahigh-frequency radio-frequency identification (RFID) tags on a fabric substrate. The conductive ink comprising functionalized graphene nanoplatelets is deposited directly on a cotton fabric substrate to fabricate the tag antennas. After attaching the chips, the tag performance is evaluated through wireless tag measurements before and after high-humidity conditions, bending, and stretching. Initially, the peak read range of the tag is about 1.6 m, which increases to 3.2 m in 100% humidity conditions. Additionally, after drying, the performance of the tag returns back to normal. In a bending test, the read range of a bent tag decreases below 1 m. Furthermore, the read range of the tag in a nonbended state gradually decreases and is about 1.1 m after 100 bending cycles. According to our measurements, stretching has a serious detrimental effect on these tags and they cannot be considered stretchable. However, these initial results show that this low-cost and eco-friendly graphene RFID tag has a remarkable and unique response to moisture and high reliability in harsh bending conditions. Overall, it also has a strong potential to be used in future wearable sensor applications. |
---|---|
ISSN: | 1530-4388 1558-2574 |
DOI: | 10.1109/TDMR.2016.2582261 |