Character Recognition in Air-Writing Based on Network of Radars for Human-Machine Interface

Radar technology plays a vital role in contact-less detection of hand gestures or motions, which forms an alternate and intuitive form of human-computer interface. Air-writing refers to the writing of linguistic characters or words in free space by hand gesture movements. In this paper, we propose a...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 19; no. 19; pp. 8855 - 8864
Main Authors Arsalan, Muhammad, Santra, Avik
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Radar technology plays a vital role in contact-less detection of hand gestures or motions, which forms an alternate and intuitive form of human-computer interface. Air-writing refers to the writing of linguistic characters or words in free space by hand gesture movements. In this paper, we propose an air-writing system based on a network of millimeter wave radars. We propose a two-stage approach for extraction and recognition of handwriting gestures. The extraction processing stage uses a fine range estimate combined with the trilateration technique to detect and localize the hand marker, followed by a smoothening filter to create a trajectory of the character through the hand movement. For the recognition stage, we explore two approaches: one extracts the time-series trajectory data and recognizes the drawn character using long short term memory (LSTM), bi-directional LSTM (BLSTM), and convolutional LSTM (ConvLSTM) with connectionist temporal classification (CTC) loss function, and the other approach reconstructs a 2D image from the trajectory of drawn character and uses deep convolutional neural network (DCNN) to classify the alphabets drawn by the user. ConvLSTM-CTC performs best among LSTM variants on time-series trajectory data achieving 98.33% classification accuracy similar to DCNN over the chosen character set. This paper employs real data using a network of three 60-GHz millimeter wave radar sensor to demonstrate the success of the proposed setup and associated algorithm with design consideration.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2019.2922395