Trajectory Tracking Control for a Three-Dimensional Flexible Wing

This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a distributed parameter system, which is described by partial differential equations and ordinary differential equations. A control strategy regu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 30; no. 5; pp. 2243 - 2250
Main Authors He, Wei, Tang, Xinyue, Wang, Tingting, Liu, Zhijie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a distributed parameter system, which is described by partial differential equations and ordinary differential equations. A control strategy regulates the flexible wing to track the desired trajectory by controlling two angles. Meanwhile, two active boundary controllers are proposed to restrain the vibrations both in bending and twisting. By using Lyapunov's direct method, the stability of the flexible wing system can be ensured. Numerical simulations based on the finite-difference method demonstrate the effectiveness of the proposed control schemes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2021.3139087