Online Boundary Computation Using Sampled Voltage Reference for Bus Clamping PWM-Based Hysteresis-Controlled VSI-Fed IM Drive

A current error space phasor based hysteresis current controller (HCC) with online computation of the current error boundaries using estimated sampled voltage references (SVR) for a two-level voltage source inverter (VSI) fed induction motor (IM) drive is proposed in this article. The space vector b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 35; no. 4; pp. 3939 - 3950
Main Authors Peter, Joseph, KP, Mohammed Shafi, R, Lakshmi, Ramchand, Rijil
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A current error space phasor based hysteresis current controller (HCC) with online computation of the current error boundaries using estimated sampled voltage references (SVR) for a two-level voltage source inverter (VSI) fed induction motor (IM) drive is proposed in this article. The space vector based current error of a two-level VSI-fed IM is monitored to keep the current error within the precalculated boundaries. The boundaries are computed knowing voltage error vector estimated from the current error information along α and β axes of IM. Vector selection logic is deduced to extract the features of voltage-controlled (VC) -30° and 60° bus clamping (BC) space vector pulsewidth modulation (SVPWM) based VSI-fed IM drive. The proposed HCC produces phase voltage harmonic spectrum and current error trajectories similar to that of a constant switching frequency-VC-BCSVPWM drive. It ensures adjacent voltage vector switching and retains all inherent advantages of a conventional HCC such as fast current control and has got a simpler controller implementation. A simulation model using MATLAB/Simulink is developed and analyzed over a wide speed range and experimentally validated using a dSPACE controller board on a 2.2 kW, 415 V, 3φ IM drive.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2019.2939478