Health Monitoring of Tree Trunks Using Ground Penetrating Radar
Ground penetrating radar (GPR) is traditionally applied to smooth surfaces in which the assumption of half-space is an adequate approximation that does not deviate much from reality. Nonetheless, using GPR for internal structure characterization of tree trunks requires measurements on an irregularly...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 57; no. 10; pp. 8317 - 8326 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ground penetrating radar (GPR) is traditionally applied to smooth surfaces in which the assumption of half-space is an adequate approximation that does not deviate much from reality. Nonetheless, using GPR for internal structure characterization of tree trunks requires measurements on an irregularly shaped closed curve. A typical hyperbola fitting has no physical meaning in this new context since the reflection patterns are strongly associated with the shape of the tree trunk. Instead of a clinical hyperbola, the reflections give rise to complex-shaped patterns that are difficult to be analyzed even in the absence of clutter. In this paper, a novel processing scheme is described which can interpret complex reflection patterns assuming a circular target subject to any arbitrary shaped surface. The proposed methodology can be applied using commercial hand-held antennas in real time, avoiding computationally costly tomographic approaches that require the usage of custom-made bespoke antenna arrays. The validity of the current approach is illustrated both with numerical and real experiments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2019.2920224 |