Real-Time Autonomous Spacecraft Proximity Maneuvers and Docking Using an Adaptive Artificial Potential Field Approach

In an effort to pursue more advanced missions in space, improved on-board trajectory optimization and path (re)planning capabilities are necessary. Over the past decades, numerous missions have pushed the state of the art in autonomous rendezvous and proximity operations (RPOs). Regardless of the mi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 27; no. 6; pp. 2598 - 2605
Main Authors Zappulla, Richard, Park, Hyeongjun, Virgili-Llop, Josep, Romano, Marcello
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2018.2866963

Cover

Abstract In an effort to pursue more advanced missions in space, improved on-board trajectory optimization and path (re)planning capabilities are necessary. Over the past decades, numerous missions have pushed the state of the art in autonomous rendezvous and proximity operations (RPOs). Regardless of the mission, any RPO guidance algorithm must be able to react to a dynamic environment while generating a fuel-efficient trajectory. An adaptive artificial potential function (AAPF) guidance exhibiting these properties has been experimentally evaluated on a spacecraft air-bearing test bed and its performance compared to traditional APF and other real-time guidance methods.
AbstractList In an effort to pursue more advanced missions in space, improved on-board trajectory optimization and path (re)planning capabilities are necessary. Over the past decades, numerous missions have pushed the state of the art in autonomous rendezvous and proximity operations (RPOs). Regardless of the mission, any RPO guidance algorithm must be able to react to a dynamic environment while generating a fuel-efficient trajectory. An adaptive artificial potential function (AAPF) guidance exhibiting these properties has been experimentally evaluated on a spacecraft air-bearing test bed and its performance compared to traditional APF and other real-time guidance methods.
Author Park, Hyeongjun
Romano, Marcello
Virgili-Llop, Josep
Zappulla, Richard
Author_xml – sequence: 1
  givenname: Richard
  orcidid: 0000-0001-7399-4817
  surname: Zappulla
  fullname: Zappulla, Richard
  email: rzappull@nps.edu
  organization: Mechanical and Aerospace Engineering Department, Naval Postgraduate School, Monterey, CA, USA
– sequence: 2
  givenname: Hyeongjun
  orcidid: 0000-0002-5657-8624
  surname: Park
  fullname: Park, Hyeongjun
  organization: Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM, USA
– sequence: 3
  givenname: Josep
  orcidid: 0000-0002-2477-0005
  surname: Virgili-Llop
  fullname: Virgili-Llop, Josep
  organization: Mechanical and Aerospace Engineering Department, Naval Postgraduate School, Monterey, CA, USA
– sequence: 4
  givenname: Marcello
  orcidid: 0000-0002-6351-6229
  surname: Romano
  fullname: Romano, Marcello
  organization: Mechanical and Aerospace Engineering Department, Naval Postgraduate School, Monterey, CA, USA
BookMark eNp9UMtu2zAQJAoXaJzkA4peCPQshw-Rko6GW6cFEiRInLOwolYtXZlUSSpI_r4SbPSQQy67c5gHZpZk4bxDQj5ztuKcVVe7zeNuJRgvV6LUutLyAznjSpUZK7VaTJhpmWkl9SeyjHHPGM-VKM7I-IDQZzt7QLoek3f-4MdIHwcwaAJ0id4H_2IPNr3SW3A4PmOIFFxLv3nzx7pf9CnOFxxdtzAk-zz5hGQ7ayz09N4ndGlGW4t9S9fDEDyY3xfkYwd9xMvTPydP2--7zY_s5u7652Z9kxlRyZRVwJQwAvOuaVibT00Kow3Lpx7IFMgCUeQooFVK5G2ZM15JXQIWjWwAWCPPydej7xT7d8SY6r0fg5siayGZrIqyquTE4keWCT7GgF09BHuA8FpzVs_r1vO69bxufVp30hRvNMYmSNa7FMD27yq_HJUWEf8nlbmWmkv5D8Slir8
CODEN IETTE2
CitedBy_id crossref_primary_10_1016_j_chb_2023_108110
crossref_primary_10_1109_TAES_2021_3094628
crossref_primary_10_1016_j_ast_2024_109474
crossref_primary_10_2514_1_G007314
crossref_primary_10_1016_j_automatica_2023_111367
crossref_primary_10_1109_TCST_2020_3005966
crossref_primary_10_1016_j_paerosci_2021_100696
crossref_primary_10_3390_aerospace11030245
crossref_primary_10_1016_j_actaastro_2020_05_016
crossref_primary_10_1016_j_ast_2020_105967
crossref_primary_10_1109_LCSYS_2021_3136813
crossref_primary_10_1007_s00500_021_06104_6
crossref_primary_10_1016_j_asr_2023_04_037
crossref_primary_10_3390_aerospace9050276
crossref_primary_10_1016_j_isatra_2022_09_018
crossref_primary_10_2514_1_A34838
crossref_primary_10_1177_01423312221100340
crossref_primary_10_1016_j_asr_2021_07_027
crossref_primary_10_1002_pamm_70001
crossref_primary_10_1109_TIE_2022_3225818
crossref_primary_10_1177_21695067231192262
crossref_primary_10_1109_LRA_2022_3161710
crossref_primary_10_1177_0142331220928886
crossref_primary_10_1109_TAES_2022_3191293
crossref_primary_10_1016_j_fraope_2024_100070
crossref_primary_10_1109_JSYST_2020_3007428
crossref_primary_10_1016_j_asr_2022_08_002
crossref_primary_10_1016_j_ast_2023_108738
crossref_primary_10_1007_s11071_021_07182_9
crossref_primary_10_3390_aerospace11010027
crossref_primary_10_1016_j_ast_2021_106739
crossref_primary_10_1109_TAES_2021_3053134
crossref_primary_10_1016_j_asr_2023_01_005
crossref_primary_10_1016_j_asr_2023_04_008
crossref_primary_10_2514_1_G006656
crossref_primary_10_3390_app10175986
crossref_primary_10_1109_TAES_2023_3268023
crossref_primary_10_2514_1_G006213
crossref_primary_10_1016_j_asr_2020_07_035
crossref_primary_10_1109_ACCESS_2019_2925894
crossref_primary_10_3390_app11146532
crossref_primary_10_3390_machines10080600
Cites_doi 10.1016/j.actaastro.2010.08.012
10.2514/1.49449
10.2514/1.58436
10.1109/TMECH.2015.2494607
10.2514/1.G000525
10.2514/1.22092
10.1007/s12567-017-0155-7
10.1016/j.conengprac.2012.03.009
10.1016/j.ast.2007.02.009
10.2514/1.G001631
10.2514/1.G002986
10.1016/j.actaastro.2015.12.018
10.1177/027836498600500106
10.2514/6.2016-5273
10.2514/8.8704
10.2514/3.21375
10.1504/IJMA.2013.055612
10.1109/TASE.2009.2039010
10.1002/rnc.2827
10.2514/1.43563
10.1109/TIE.2016.2609399
10.2514/1.A33769
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2018.2866963
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 2605
ExternalDocumentID 10_1109_TCST_2018_2866963
8463613
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c293t-9a052c2e4fbb0d48657c6c04653e05a37ee24e2ad5524d84019368ae7b3baa0b3
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Sun Jun 29 15:27:59 EDT 2025
Tue Jul 01 02:36:00 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Wed Aug 27 02:43:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9a052c2e4fbb0d48657c6c04653e05a37ee24e2ad5524d84019368ae7b3baa0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7399-4817
0000-0002-5657-8624
0000-0002-2477-0005
0000-0002-6351-6229
PQID 2303978993
PQPubID 85425
PageCount 8
ParticipantIDs ieee_primary_8463613
crossref_primary_10_1109_TCST_2018_2866963
proquest_journals_2303978993
crossref_citationtrail_10_1109_TCST_2018_2866963
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Nov.
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
zappulla (ref31) 2016
ref12
ref15
zappulla (ref21) 2017
ref14
ref30
henshaw (ref26) 2005
ref33
ref11
ref17
ref16
ref19
ref18
(ref2) 2015
(ref1) 2011
kirk (ref32) 2004
ref23
fields (ref10) 2014
ref25
ref22
muñoz (ref4) 2010
ref28
ref27
ref29
ref8
zagaris (ref24) 2015
ref7
muñoz (ref5) 2011
ref9
ref3
ref6
zappulla (ref20) 2017
References_xml – start-page: 259
  year: 2004
  ident: ref32
  publication-title: Optimal Control Theory An Introduction
– year: 2011
  ident: ref5
  article-title: Rapid path-planning algorithms for autonomous proximity operations of satellites
– ident: ref13
  doi: 10.1016/j.actaastro.2010.08.012
– ident: ref18
  doi: 10.2514/1.49449
– year: 2017
  ident: ref20
  article-title: Experimental evaluation methodology for spacecraft proximity maneuvers in a dynamic environment
– ident: ref14
  doi: 10.2514/1.58436
– year: 2015
  ident: ref2
  publication-title: NASA technology roadmaps TA 4 Robotics and autonomous systems
– ident: ref22
  doi: 10.1109/TMECH.2015.2494607
– start-page: 3813
  year: 2017
  ident: ref21
  article-title: Near-optimal real-time spacecraft guidance and control using harmonic potential functions and a modified RRT
  publication-title: Proc AAS/AIAA Spaceflight Mech Meet
– start-page: 1
  year: 2010
  ident: ref4
  article-title: Rapid path-planning options for autonomous proximity operations of spacecraft
  publication-title: Proceedings of the AIAA Astro Spec Conf
– year: 2014
  ident: ref10
  article-title: Continuous control artificial potential function methods and optimal control
– ident: ref3
  doi: 10.2514/1.G000525
– ident: ref6
  doi: 10.2514/1.22092
– ident: ref17
  doi: 10.1007/s12567-017-0155-7
– ident: ref15
  doi: 10.1016/j.conengprac.2012.03.009
– ident: ref7
  doi: 10.1016/j.ast.2007.02.009
– ident: ref19
  doi: 10.2514/1.G001631
– ident: ref33
  doi: 10.2514/1.G002986
– start-page: 4461
  year: 2016
  ident: ref31
  article-title: Experiments on autonomous spacecraft rendezvous and docking using an adaptive artificial potential field approach
  publication-title: Proc AAS/AIAA Spaceflight Mech Meet
– ident: ref30
  doi: 10.1016/j.actaastro.2015.12.018
– ident: ref8
  doi: 10.1177/027836498600500106
– start-page: 131
  year: 2015
  ident: ref24
  article-title: Survey of spacecraft rendezvous and proximity guidance algorithms for on-board implementation
  publication-title: Proc AAS/AIAA Spaceflight Mech Meet
– start-page: 219
  year: 2005
  ident: ref26
  article-title: A unification of artificial potential function guidance and optimal trajectory planning
  publication-title: Proc 28th AAS/AIAA Guid Control Conf
– ident: ref28
  doi: 10.2514/6.2016-5273
– ident: ref29
  doi: 10.2514/8.8704
– ident: ref9
  doi: 10.2514/3.21375
– ident: ref25
  doi: 10.1504/IJMA.2013.055612
– ident: ref12
  doi: 10.1109/TASE.2009.2039010
– year: 2011
  ident: ref1
  publication-title: Vision and Voyages for Planetary Science in the Decade 20132022
– ident: ref16
  doi: 10.1002/rnc.2827
– ident: ref11
  doi: 10.2514/1.43563
– ident: ref23
  doi: 10.1109/TIE.2016.2609399
– ident: ref27
  doi: 10.2514/1.A33769
SSID ssj0014527
Score 2.4855323
Snippet In an effort to pursue more advanced missions in space, improved on-board trajectory optimization and path (re)planning capabilities are necessary. Over the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2598
SubjectTerms Adaptive artificial potential function (AAPF)
Adaptive systems
Algorithms
APF
Navigation
Potential fields
Real time
real-time control
Real-time systems
Rendezvous guidance
Space missions
Space vehicles
Spacecraft docking
Spacecraft guidance
spacecraft guidance and control
Spacecraft maneuvers
Trajectory
Trajectory optimization
Vehicle dynamics
Title Real-Time Autonomous Spacecraft Proximity Maneuvers and Docking Using an Adaptive Artificial Potential Field Approach
URI https://ieeexplore.ieee.org/document/8463613
https://www.proquest.com/docview/2303978993
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJz34a4rTKTl4ErvVJk3T4xiOIUyG22C3kjTZRemGaw_61_te2hV_Id5CSdrAl-a9l3zve4RcR2BEJFJ1dMiXHjd32tN3mnmay6XkRplQYO7w-FGM5vxhES4a5LbOhbHWOvKZ7WLT3eWbVVrgUVlPoroVlqjdgWVW5mrVNwa8LM8KEQ7zhLuSbFd6mr3ZYDpDEpfsBlKIWLAvNsgVVfmxEzvzMjwg4-3ESlbJc7fIdTd9_6bZ-N-ZH5L9ys-k_XJhHJGGzY7J3if1wRYpnsBJ9DAHhPaLHJMbVsWGTiGIBldSLXM6gclg_tMbHavMFkjgoCozFAwTHrBTRzeAJ7Rv1Bq3Tfe5UpKCTlY5EpGgNUSSHO1X4uUnZD68nw1GXlWFwUvBFci9WPlhkAaWL7X2DZcijFKR-qjLZv1QscjagNsAUA0DbiBeBJdQSGUjzbRSvmanpJmtMntGqGKax1JEqUENIMal9QOFejyBVjH4DW3ib3FJ0kqiHCtlvCQuVPHjBKFMEMqkgrJNbuoh61Kf46_OLYSm7lih0iadLfhJ9QdvEgjNwFWDaJSd_z7qguzCu-MyL7FDmvlrYS_BQcn1lVuZH4fd4bI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5ED-rBt7g-c_Akdu02aZoeF3FZHyuiK3grSZO9KF3R9qC_3pm0u_hCvIWSkMCkmW-Sb74BOEzQiSii6phYjAJhOyYwHcMDI9RICattLCl3eHAt-_fi4iF-mIHjaS6Mc86Tz1ybmv4t347ziq7KThSpW1GJ2jn0-yKus7WmbwaiLtCKMQ4PpH-UbDWKmifD07sh0bhUO1JSppJ_8UK-rMqPs9g7mN4yDCZLq3klj-2qNO38_Ztq43_XvgJLDdJk3XprrMKMK9Zg8ZP-4DpUtwgTA8oCYd2qpPSGcfXK7jCMRjCpRyW7wcVQBtQbG-jCVUThYLqwDF0TXbEzTzjAL6xr9TMdnH66WpSC3YxLoiJhq0c0OdZt5Ms34L53NjztB00dhiBHMFAGqQ7jKI-cGBkTWqFknOQyD0mZzYWx5olzkXAR2jWOhMWIEUGhVNolhhutQ8M3YbYYF24LmOZGpEomuSUVIC6UCyNNijyR0SkihxaEE7tkeSNSTrUynjIfrIRpRqbMyJRZY8oWHE2HPNcKHX91XifTTDs2VmnB7sT4WfMPv2YYnCFYw3iUb_8-6gDm-8PBVXZ1fn25Aws4T1pnKe7CbPlSuT2EK6XZ97v0A3_u5P8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Autonomous+Spacecraft+Proximity+Maneuvers+and+Docking+Using+an+Adaptive+Artificial+Potential+Field+Approach&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Zappulla%2C+Richard&rft.au=Park%2C+Hyeongjun&rft.au=Virgili-Llop%2C+Josep&rft.au=Romano%2C+Marcello&rft.date=2019-11-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=27&rft.issue=6&rft.spage=2598&rft.epage=2605&rft_id=info:doi/10.1109%2FTCST.2018.2866963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2018_2866963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon