Real-Time Autonomous Spacecraft Proximity Maneuvers and Docking Using an Adaptive Artificial Potential Field Approach
In an effort to pursue more advanced missions in space, improved on-board trajectory optimization and path (re)planning capabilities are necessary. Over the past decades, numerous missions have pushed the state of the art in autonomous rendezvous and proximity operations (RPOs). Regardless of the mi...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 27; no. 6; pp. 2598 - 2605 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6536 1558-0865 |
DOI | 10.1109/TCST.2018.2866963 |
Cover
Abstract | In an effort to pursue more advanced missions in space, improved on-board trajectory optimization and path (re)planning capabilities are necessary. Over the past decades, numerous missions have pushed the state of the art in autonomous rendezvous and proximity operations (RPOs). Regardless of the mission, any RPO guidance algorithm must be able to react to a dynamic environment while generating a fuel-efficient trajectory. An adaptive artificial potential function (AAPF) guidance exhibiting these properties has been experimentally evaluated on a spacecraft air-bearing test bed and its performance compared to traditional APF and other real-time guidance methods. |
---|---|
AbstractList | In an effort to pursue more advanced missions in space, improved on-board trajectory optimization and path (re)planning capabilities are necessary. Over the past decades, numerous missions have pushed the state of the art in autonomous rendezvous and proximity operations (RPOs). Regardless of the mission, any RPO guidance algorithm must be able to react to a dynamic environment while generating a fuel-efficient trajectory. An adaptive artificial potential function (AAPF) guidance exhibiting these properties has been experimentally evaluated on a spacecraft air-bearing test bed and its performance compared to traditional APF and other real-time guidance methods. |
Author | Park, Hyeongjun Romano, Marcello Virgili-Llop, Josep Zappulla, Richard |
Author_xml | – sequence: 1 givenname: Richard orcidid: 0000-0001-7399-4817 surname: Zappulla fullname: Zappulla, Richard email: rzappull@nps.edu organization: Mechanical and Aerospace Engineering Department, Naval Postgraduate School, Monterey, CA, USA – sequence: 2 givenname: Hyeongjun orcidid: 0000-0002-5657-8624 surname: Park fullname: Park, Hyeongjun organization: Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM, USA – sequence: 3 givenname: Josep orcidid: 0000-0002-2477-0005 surname: Virgili-Llop fullname: Virgili-Llop, Josep organization: Mechanical and Aerospace Engineering Department, Naval Postgraduate School, Monterey, CA, USA – sequence: 4 givenname: Marcello orcidid: 0000-0002-6351-6229 surname: Romano fullname: Romano, Marcello organization: Mechanical and Aerospace Engineering Department, Naval Postgraduate School, Monterey, CA, USA |
BookMark | eNp9UMtu2zAQJAoXaJzkA4peCPQshw-Rko6GW6cFEiRInLOwolYtXZlUSSpI_r4SbPSQQy67c5gHZpZk4bxDQj5ztuKcVVe7zeNuJRgvV6LUutLyAznjSpUZK7VaTJhpmWkl9SeyjHHPGM-VKM7I-IDQZzt7QLoek3f-4MdIHwcwaAJ0id4H_2IPNr3SW3A4PmOIFFxLv3nzx7pf9CnOFxxdtzAk-zz5hGQ7ayz09N4ndGlGW4t9S9fDEDyY3xfkYwd9xMvTPydP2--7zY_s5u7652Z9kxlRyZRVwJQwAvOuaVibT00Kow3Lpx7IFMgCUeQooFVK5G2ZM15JXQIWjWwAWCPPydej7xT7d8SY6r0fg5siayGZrIqyquTE4keWCT7GgF09BHuA8FpzVs_r1vO69bxufVp30hRvNMYmSNa7FMD27yq_HJUWEf8nlbmWmkv5D8Slir8 |
CODEN | IETTE2 |
CitedBy_id | crossref_primary_10_1016_j_chb_2023_108110 crossref_primary_10_1109_TAES_2021_3094628 crossref_primary_10_1016_j_ast_2024_109474 crossref_primary_10_2514_1_G007314 crossref_primary_10_1016_j_automatica_2023_111367 crossref_primary_10_1109_TCST_2020_3005966 crossref_primary_10_1016_j_paerosci_2021_100696 crossref_primary_10_3390_aerospace11030245 crossref_primary_10_1016_j_actaastro_2020_05_016 crossref_primary_10_1016_j_ast_2020_105967 crossref_primary_10_1109_LCSYS_2021_3136813 crossref_primary_10_1007_s00500_021_06104_6 crossref_primary_10_1016_j_asr_2023_04_037 crossref_primary_10_3390_aerospace9050276 crossref_primary_10_1016_j_isatra_2022_09_018 crossref_primary_10_2514_1_A34838 crossref_primary_10_1177_01423312221100340 crossref_primary_10_1016_j_asr_2021_07_027 crossref_primary_10_1002_pamm_70001 crossref_primary_10_1109_TIE_2022_3225818 crossref_primary_10_1177_21695067231192262 crossref_primary_10_1109_LRA_2022_3161710 crossref_primary_10_1177_0142331220928886 crossref_primary_10_1109_TAES_2022_3191293 crossref_primary_10_1016_j_fraope_2024_100070 crossref_primary_10_1109_JSYST_2020_3007428 crossref_primary_10_1016_j_asr_2022_08_002 crossref_primary_10_1016_j_ast_2023_108738 crossref_primary_10_1007_s11071_021_07182_9 crossref_primary_10_3390_aerospace11010027 crossref_primary_10_1016_j_ast_2021_106739 crossref_primary_10_1109_TAES_2021_3053134 crossref_primary_10_1016_j_asr_2023_01_005 crossref_primary_10_1016_j_asr_2023_04_008 crossref_primary_10_2514_1_G006656 crossref_primary_10_3390_app10175986 crossref_primary_10_1109_TAES_2023_3268023 crossref_primary_10_2514_1_G006213 crossref_primary_10_1016_j_asr_2020_07_035 crossref_primary_10_1109_ACCESS_2019_2925894 crossref_primary_10_3390_app11146532 crossref_primary_10_3390_machines10080600 |
Cites_doi | 10.1016/j.actaastro.2010.08.012 10.2514/1.49449 10.2514/1.58436 10.1109/TMECH.2015.2494607 10.2514/1.G000525 10.2514/1.22092 10.1007/s12567-017-0155-7 10.1016/j.conengprac.2012.03.009 10.1016/j.ast.2007.02.009 10.2514/1.G001631 10.2514/1.G002986 10.1016/j.actaastro.2015.12.018 10.1177/027836498600500106 10.2514/6.2016-5273 10.2514/8.8704 10.2514/3.21375 10.1504/IJMA.2013.055612 10.1109/TASE.2009.2039010 10.1002/rnc.2827 10.2514/1.43563 10.1109/TIE.2016.2609399 10.2514/1.A33769 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
DOI | 10.1109/TCST.2018.2866963 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0865 |
EndPage | 2605 |
ExternalDocumentID | 10_1109_TCST_2018_2866963 8463613 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c293t-9a052c2e4fbb0d48657c6c04653e05a37ee24e2ad5524d84019368ae7b3baa0b3 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Sun Jun 29 15:27:59 EDT 2025 Tue Jul 01 02:36:00 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Aug 27 02:43:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-9a052c2e4fbb0d48657c6c04653e05a37ee24e2ad5524d84019368ae7b3baa0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7399-4817 0000-0002-5657-8624 0000-0002-2477-0005 0000-0002-6351-6229 |
PQID | 2303978993 |
PQPubID | 85425 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8463613 crossref_primary_10_1109_TCST_2018_2866963 proquest_journals_2303978993 crossref_citationtrail_10_1109_TCST_2018_2866963 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Nov. 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-Nov. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 zappulla (ref31) 2016 ref12 ref15 zappulla (ref21) 2017 ref14 ref30 henshaw (ref26) 2005 ref33 ref11 ref17 ref16 ref19 ref18 (ref2) 2015 (ref1) 2011 kirk (ref32) 2004 ref23 fields (ref10) 2014 ref25 ref22 muñoz (ref4) 2010 ref28 ref27 ref29 ref8 zagaris (ref24) 2015 ref7 muñoz (ref5) 2011 ref9 ref3 ref6 zappulla (ref20) 2017 |
References_xml | – start-page: 259 year: 2004 ident: ref32 publication-title: Optimal Control Theory An Introduction – year: 2011 ident: ref5 article-title: Rapid path-planning algorithms for autonomous proximity operations of satellites – ident: ref13 doi: 10.1016/j.actaastro.2010.08.012 – ident: ref18 doi: 10.2514/1.49449 – year: 2017 ident: ref20 article-title: Experimental evaluation methodology for spacecraft proximity maneuvers in a dynamic environment – ident: ref14 doi: 10.2514/1.58436 – year: 2015 ident: ref2 publication-title: NASA technology roadmaps TA 4 Robotics and autonomous systems – ident: ref22 doi: 10.1109/TMECH.2015.2494607 – start-page: 3813 year: 2017 ident: ref21 article-title: Near-optimal real-time spacecraft guidance and control using harmonic potential functions and a modified RRT publication-title: Proc AAS/AIAA Spaceflight Mech Meet – start-page: 1 year: 2010 ident: ref4 article-title: Rapid path-planning options for autonomous proximity operations of spacecraft publication-title: Proceedings of the AIAA Astro Spec Conf – year: 2014 ident: ref10 article-title: Continuous control artificial potential function methods and optimal control – ident: ref3 doi: 10.2514/1.G000525 – ident: ref6 doi: 10.2514/1.22092 – ident: ref17 doi: 10.1007/s12567-017-0155-7 – ident: ref15 doi: 10.1016/j.conengprac.2012.03.009 – ident: ref7 doi: 10.1016/j.ast.2007.02.009 – ident: ref19 doi: 10.2514/1.G001631 – ident: ref33 doi: 10.2514/1.G002986 – start-page: 4461 year: 2016 ident: ref31 article-title: Experiments on autonomous spacecraft rendezvous and docking using an adaptive artificial potential field approach publication-title: Proc AAS/AIAA Spaceflight Mech Meet – ident: ref30 doi: 10.1016/j.actaastro.2015.12.018 – ident: ref8 doi: 10.1177/027836498600500106 – start-page: 131 year: 2015 ident: ref24 article-title: Survey of spacecraft rendezvous and proximity guidance algorithms for on-board implementation publication-title: Proc AAS/AIAA Spaceflight Mech Meet – start-page: 219 year: 2005 ident: ref26 article-title: A unification of artificial potential function guidance and optimal trajectory planning publication-title: Proc 28th AAS/AIAA Guid Control Conf – ident: ref28 doi: 10.2514/6.2016-5273 – ident: ref29 doi: 10.2514/8.8704 – ident: ref9 doi: 10.2514/3.21375 – ident: ref25 doi: 10.1504/IJMA.2013.055612 – ident: ref12 doi: 10.1109/TASE.2009.2039010 – year: 2011 ident: ref1 publication-title: Vision and Voyages for Planetary Science in the Decade 20132022 – ident: ref16 doi: 10.1002/rnc.2827 – ident: ref11 doi: 10.2514/1.43563 – ident: ref23 doi: 10.1109/TIE.2016.2609399 – ident: ref27 doi: 10.2514/1.A33769 |
SSID | ssj0014527 |
Score | 2.4855323 |
Snippet | In an effort to pursue more advanced missions in space, improved on-board trajectory optimization and path (re)planning capabilities are necessary. Over the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2598 |
SubjectTerms | Adaptive artificial potential function (AAPF) Adaptive systems Algorithms APF Navigation Potential fields Real time real-time control Real-time systems Rendezvous guidance Space missions Space vehicles Spacecraft docking Spacecraft guidance spacecraft guidance and control Spacecraft maneuvers Trajectory Trajectory optimization Vehicle dynamics |
Title | Real-Time Autonomous Spacecraft Proximity Maneuvers and Docking Using an Adaptive Artificial Potential Field Approach |
URI | https://ieeexplore.ieee.org/document/8463613 https://www.proquest.com/docview/2303978993 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJz34a4rTKTl4ErvVJk3T4xiOIUyG22C3kjTZRemGaw_61_te2hV_Id5CSdrAl-a9l3zve4RcR2BEJFJ1dMiXHjd32tN3mnmay6XkRplQYO7w-FGM5vxhES4a5LbOhbHWOvKZ7WLT3eWbVVrgUVlPoroVlqjdgWVW5mrVNwa8LM8KEQ7zhLuSbFd6mr3ZYDpDEpfsBlKIWLAvNsgVVfmxEzvzMjwg4-3ESlbJc7fIdTd9_6bZ-N-ZH5L9ys-k_XJhHJGGzY7J3if1wRYpnsBJ9DAHhPaLHJMbVsWGTiGIBldSLXM6gclg_tMbHavMFkjgoCozFAwTHrBTRzeAJ7Rv1Bq3Tfe5UpKCTlY5EpGgNUSSHO1X4uUnZD68nw1GXlWFwUvBFci9WPlhkAaWL7X2DZcijFKR-qjLZv1QscjagNsAUA0DbiBeBJdQSGUjzbRSvmanpJmtMntGqGKax1JEqUENIMal9QOFejyBVjH4DW3ib3FJ0kqiHCtlvCQuVPHjBKFMEMqkgrJNbuoh61Kf46_OLYSm7lih0iadLfhJ9QdvEgjNwFWDaJSd_z7qguzCu-MyL7FDmvlrYS_BQcn1lVuZH4fd4bI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5ED-rBt7g-c_Akdu02aZoeF3FZHyuiK3grSZO9KF3R9qC_3pm0u_hCvIWSkMCkmW-Sb74BOEzQiSii6phYjAJhOyYwHcMDI9RICattLCl3eHAt-_fi4iF-mIHjaS6Mc86Tz1ybmv4t347ziq7KThSpW1GJ2jn0-yKus7WmbwaiLtCKMQ4PpH-UbDWKmifD07sh0bhUO1JSppJ_8UK-rMqPs9g7mN4yDCZLq3klj-2qNO38_Ztq43_XvgJLDdJk3XprrMKMK9Zg8ZP-4DpUtwgTA8oCYd2qpPSGcfXK7jCMRjCpRyW7wcVQBtQbG-jCVUThYLqwDF0TXbEzTzjAL6xr9TMdnH66WpSC3YxLoiJhq0c0OdZt5Ms34L53NjztB00dhiBHMFAGqQ7jKI-cGBkTWqFknOQyD0mZzYWx5olzkXAR2jWOhMWIEUGhVNolhhutQ8M3YbYYF24LmOZGpEomuSUVIC6UCyNNijyR0SkihxaEE7tkeSNSTrUynjIfrIRpRqbMyJRZY8oWHE2HPNcKHX91XifTTDs2VmnB7sT4WfMPv2YYnCFYw3iUb_8-6gDm-8PBVXZ1fn25Aws4T1pnKe7CbPlSuT2EK6XZ97v0A3_u5P8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Autonomous+Spacecraft+Proximity+Maneuvers+and+Docking+Using+an+Adaptive+Artificial+Potential+Field+Approach&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Zappulla%2C+Richard&rft.au=Park%2C+Hyeongjun&rft.au=Virgili-Llop%2C+Josep&rft.au=Romano%2C+Marcello&rft.date=2019-11-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=27&rft.issue=6&rft.spage=2598&rft.epage=2605&rft_id=info:doi/10.1109%2FTCST.2018.2866963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2018_2866963 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |