Real-Time Autonomous Spacecraft Proximity Maneuvers and Docking Using an Adaptive Artificial Potential Field Approach

In an effort to pursue more advanced missions in space, improved on-board trajectory optimization and path (re)planning capabilities are necessary. Over the past decades, numerous missions have pushed the state of the art in autonomous rendezvous and proximity operations (RPOs). Regardless of the mi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 27; no. 6; pp. 2598 - 2605
Main Authors Zappulla, Richard, Park, Hyeongjun, Virgili-Llop, Josep, Romano, Marcello
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2018.2866963

Cover

Loading…
More Information
Summary:In an effort to pursue more advanced missions in space, improved on-board trajectory optimization and path (re)planning capabilities are necessary. Over the past decades, numerous missions have pushed the state of the art in autonomous rendezvous and proximity operations (RPOs). Regardless of the mission, any RPO guidance algorithm must be able to react to a dynamic environment while generating a fuel-efficient trajectory. An adaptive artificial potential function (AAPF) guidance exhibiting these properties has been experimentally evaluated on a spacecraft air-bearing test bed and its performance compared to traditional APF and other real-time guidance methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2018.2866963