Edge Computing-Empowered Large-Scale Traffic Data Recovery Leveraging Low-Rank Theory
Intelligent Transportation Systems (ITSs) have been widely deployed to provide traffic sensing data for a variety of smart traffic applications. However, the inevitable and ubiquitous missing data potentially compromises the performance of ITSs and even undermines the traffic applications. Therefore...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 7; no. 4; pp. 2205 - 2218 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Intelligent Transportation Systems (ITSs) have been widely deployed to provide traffic sensing data for a variety of smart traffic applications. However, the inevitable and ubiquitous missing data potentially compromises the performance of ITSs and even undermines the traffic applications. Therefore, accurate and real-time traffic data recovery is crucial to ITSs and its related services, especially for large-scale traffic networks. To leverage the characteristics in transportation networks for data recovery, we first conduct experimental explorations on a large-scale traffic dataset of an ITS and further quantify the spatiotemporal correlations of traffic data. Inspired by the observation results, we propose GTR, an edGe computing-empowered system for large-scale Traffic data recovery with low-Rank theory. GTR leverages the decentralized computing power of edge nodes to process massive traffic data from hundreds of traffic stations for accurate and real-time recovery. Specifically, we first propose a suboptimal edge node deployment algorithm with a theoretical performance guarantee, by exploiting the supermodularity in the NP-hard joint-optimization problem. Furthermore, to leverage the low-rank nature of traffic data, we transform the data recovery problem into a low-rank minimization problem, then utilize the fixed-point continuation iterative scheme to capture spatiotemporal correlations for accurate traffic recovery. Finally, the extensive trace-driven evaluations show that GTR only needs at most 5.7% extra total cost compared to the optimal deployment, while outperforming four baseline methods by 63.8% improvement in terms of traffic data recovery accuracy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2327-4697 2334-329X |
DOI: | 10.1109/TNSE.2020.2984658 |