Trajectory Analysis Using Static Patches for Magnetic Particle Imaging

Magnetic particle imaging (MPI) is an imaging technique based on the determination of magnetic material by moving a field-free point along specified trajectories, which are used to sample the field of view. Due to technical and safety reasons, the field of view is limited in size. To enlarge the siz...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 51; no. 2; pp. 1 - 4
Main Authors Szwargulski, Patryk, Ahlborg, Mandy, Kaethner, Christian, Buzug, Thorsten M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Magnetic particle imaging (MPI) is an imaging technique based on the determination of magnetic material by moving a field-free point along specified trajectories, which are used to sample the field of view. Due to technical and safety reasons, the field of view is limited in size. To enlarge the size of the field of view, trajectory patches are used, which are sampled separately and combined consecutively to an entire field of view. The aim of this paper is to analyze the effect of different trajectories combined with the patch approach. In addition, an empiric study is performed to analyze the influence of overlapped patches on each trajectory combined with cutoff as postprocessing method. As a follow-up, a new patch formation of the radial trajectory based on a phase shift between each of the patches is introduced. Finally, it can be shown that the Lissajous trajectory, which is commonly used for MPI, provides appropriate results. However, the results of overlapped patches with a circular trajectory increase spatial resolution.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2014.2350152