Parametric Evolution of Power-law Energy Spectra of Energetic Electrons in the Coronal Loops

Abstract Fast electron beams (FEBs) are one of the main products of various active events and are ubiquitous in solar, space and cosmic plasmas. They reveal themselves in hard X-ray and radio emissions. The observed characteristics of X-ray and radio emissions sensitively depend on the energy distri...

Full description

Saved in:
Bibliographic Details
Published inResearch in astronomy and astrophysics Vol. 23; no. 2; pp. 25009 - 25019
Main Authors Tang, Jian-Fei, Wu, De-Jin, Chen, Ling, Xu, Lei
Format Journal Article
LanguageEnglish
Published Beijing National Astromonical Observatories, CAS and IOP Publishing 01.02.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Fast electron beams (FEBs) are one of the main products of various active events and are ubiquitous in solar, space and cosmic plasmas. They reveal themselves in hard X-ray and radio emissions. The observed characteristics of X-ray and radio emissions sensitively depend on the energy distribution of FEBs, which usually have a power-law energy spectrum. As FEBs travel in the solar atmosphere, their energy distribution can considerably vary due to the interaction with ambient plasmas. Tang et al. investigated the evolution of the energy spectrum of the FEBs traveling along a flare loop and discussed the possible effects on associated hard X-ray (HXR) and radio emissions. Considering the ubiquitous coronal loops in active regions, in the present paper, we investigate the parametric evolution of the energy spectra of FEBs when propagating along coronal loops. Here, we take the sunpot atmospheric model as an approximate coronal loop atmosphere model. The results show that the energy loss has an important impact on the cutoff behavior and energy spectra of FEBs when precipitating in a coronal loop with density ratio n b / n e = 0.01. The initially single power-law spectrum with a steepness cutoff can evolve into a more complex double power-law spectrum or two “knees” power-law spectrum with a flattened steepness cutoff behavior or saturation cutoff behavior. Our calculations also demonstrate that the energy spectrum evolution is not obvious if n b / n 0 = 0.001 as Tang et al. asserted. The present results are helpful for a more comprehensive understanding of the dynamic spectra of HXR and radio emissions from FEBs.
Bibliography:RAA-2022-0385.R2
ISSN:1674-4527
2397-6209
DOI:10.1088/1674-4527/acab9f