On the uniqueness of weights in single-layer perceptrons

In this paper the geometric formulation of the single layer perceptron weight optimization problem previously described by Coetzee et al. (1993, 1996) is combined with results from other researchers on nonconvex set projections to describe sufficient conditions for uniqueness of weight solutions. It...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 7; no. 2; pp. 318 - 325
Main Authors Coetzee, F.M., Stonick, V.L.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.1996
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper the geometric formulation of the single layer perceptron weight optimization problem previously described by Coetzee et al. (1993, 1996) is combined with results from other researchers on nonconvex set projections to describe sufficient conditions for uniqueness of weight solutions. It is shown that the perceptron data surface is pseudoconvex and has infinite folding, allowing for the specification of a region of desired vectors having unique projections purely in terms of the local curvature of the data surface. No information is therefore required regarding the global curvature or size of the data surface. These results in principle allow for a posteriori evaluation of whether a weight solution is unique or globally optimal, and for a priori scaling of desired vector values to ensure uniqueness, through analysis of the input data. The practical applicability of these results from a numerical perspective is evaluated on some carefully chosen examples.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1045-9227
1941-0093
DOI:10.1109/72.485635