A Fast and Compact 3-D CNN for Hyperspectral Image Classification

Hyperspectral images (HSIs) are used in a large number of real-world applications. HSI classification (HSIC) is a challenging task due to high interclass similarity, high intraclass variability, overlapping, and nested regions. The 2-D convolutional neural network (CNN) is a viable classification ap...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5
Main Authors Ahmad, Muhammad, Khan, Adil Mehmood, Mazzara, Manuel, Distefano, Salvatore, Ali, Mohsin, Sarfraz, Muhammad Shahzad
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hyperspectral images (HSIs) are used in a large number of real-world applications. HSI classification (HSIC) is a challenging task due to high interclass similarity, high intraclass variability, overlapping, and nested regions. The 2-D convolutional neural network (CNN) is a viable classification approach since HSIC depends on both spectral-spatial information. The 3-D CNN is a good alternative for improving the accuracy of HSIC, but it can be computationally intensive due to the volume and spectral dimensions of HSI. Furthermore, these models may fail to extract quality feature maps and underperform over the regions having similar textures. This work proposes a 3-D CNN model that utilizes both spatial-spectral feature maps to improve the performance of HSIC. For this purpose, the HSI cube is first divided into small overlapping 3-D patches, which are processed to generate 3-D feature maps using a 3-D kernel function over multiple contiguous bands of the spectral information in a computationally efficient way. In brief, our end-to-end trained model requires fewer parameters to significantly reduce the convergence time while providing better accuracy than existing models. The results are further compared with several state-of-the-art 2-D/3-D CNN models, demonstrating remarkable performance both in terms of accuracy and computational time.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2020.3043710