FreeRider: Non-Local Adaptive Network-on-Chip Routing with Packet-Carried Propagation of Congestion Information

Non-local adaptive routing techniques, which utilize statuses of both local and distant links to make routing decisions, have recently been shown to be effective solutions for promoting the performance of Network-on-Chip (NoC). The essence of non-local adaptive routing was an additional network dedi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 26; no. 8; pp. 2272 - 2285
Main Authors Liu, Shaoli, Chen, Tianshi, Li, Ling, Li, Xi, Zhang, Mingzhe, Wang, Chao, Meng, Haibo, Zhou, Xuehai, Chen, Yunji
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Non-local adaptive routing techniques, which utilize statuses of both local and distant links to make routing decisions, have recently been shown to be effective solutions for promoting the performance of Network-on-Chip (NoC). The essence of non-local adaptive routing was an additional network dedicated to propagate congestion information of distant links on the NoC. While the dedicated Congestion Propagation Network (CPN) helps routers to make promising routing decisions, it incurs additional wiring and power costs and becomes an unnecessary decoration when the load of NoC is light. Moreover, the CPN has to be extended if one would utilize more sophisticated congestion information to enhance the performance of NoC, bringing in even larger wiring and power costs. This paper proposes an innovative non-local adaptive routing technique called FreeRider, which does not use a dedicated CPN but instead leverages free bits in head flits of existing packets to carry and propagate rich congestion information without introducing additional wires or flits. In order to balance the network load, FreeRider adopts a novel three-stage strategy of output link selection, which adequately utilizes the propagated information to make routing decisions. Experimental results on both synthetic traffic patterns and application traces show that FreeRider achieves better throughput, shorter latency, and smaller power consumption than a state-of-the-art adaptive routing technique with dedicated CPN.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2014.2345065