A Computerized Test Battery to Study Pharmacodynamic Effects on the Central Nervous System of Cholinergic Drugs in Early Phase Drug Development

Investigating potential pharmacodynamic effects in an early phase of central nervous system (CNS) drug research can provide valuable information for further development of new compounds. A computerized and thoroughly validated battery of neuropsychological and neurophysiological tests has been shown...

Full description

Saved in:
Bibliographic Details
Published inJournal of visualized experiments no. 144
Main Authors Hart, Ellen P., Alvarez-Jimenez, Ricardo, Davidse, Esther, Doll, Robert Jan, Cohen, Adam F., Van Gerven, Joop M.A., Groeneveld, Geert Jan
Format Journal Article
LanguageEnglish
Published United States 11.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Investigating potential pharmacodynamic effects in an early phase of central nervous system (CNS) drug research can provide valuable information for further development of new compounds. A computerized and thoroughly validated battery of neuropsychological and neurophysiological tests has been shown to be sensitive to detect drug-induced effects of multiple new and existing compounds. The test battery covers the main CNS domains, which have been shown to respond to drug effects and can be repeatedly administered following drug administration to characterize the concentration-effect profile of a drug. The standard tests in the battery are saccadic eye movement, smooth pursuit eye movement, the Bowdle visual analog scale (VAS), the Bond and Lader VAS, body sway, adaptive tracking, visual verbal learning, and quantitative electroencephalography (qEEG). However, the test battery is adaptive in nature, meaning that it can be composed and adjusted with tests fit to investigate specific drug classes, or even specific receptors. Showing effects of new cholinergic drugs designed to have a pro-cognitive outcome has been difficult. The pharmacological challenge model is a tool for early proof-of-pharmacology. Here, a marketed drug is used to induce temporary and reversible disease-like symptoms in healthy subjects, via a pharmacological mechanism related to the disease that is targeted as indication for the new compound. The test battery was implemented to investigate the potential of the nicotinic receptor antagonist mecamylamine to be used as a challenge model for cholinergic dysfunction, as seen in neurodegenerative disorders. A worsening of scores in a dose dependent manner on the visual verbal learning test (VVLT; a test for learning and memory abilities) and the adaptive tracking test (a measure of visuomotor control and arousal), in particular, showed that the test battery is sensitive to showing acute pharmacodynamic effect after administration of anti-cholinergic drugs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ISSN:1940-087X
1940-087X
DOI:10.3791/56569