Ultra-Sensitive Non-Enzymatic Ethanol Sensor Based on Reduced Graphene Oxide-Zinc Oxide Composite Modified Electrode
In this paper, we report a reduced Graphene Oxide (rGO)-Zinc Oxide (ZnO) composite-based nonenzymatic ethanol sensor with an ultra-high sensitivity of 508.91 μAmM -1 cm -2 which is, to the best of our knowledge, ~8 folds higher than previously reported electrochemical ethanol sensors. The rGO-ZnO co...
Saved in:
Published in | IEEE sensors journal Vol. 18; no. 5; pp. 1844 - 1848 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we report a reduced Graphene Oxide (rGO)-Zinc Oxide (ZnO) composite-based nonenzymatic ethanol sensor with an ultra-high sensitivity of 508.91 μAmM -1 cm -2 which is, to the best of our knowledge, ~8 folds higher than previously reported electrochemical ethanol sensors. The rGO-ZnO composite was synthesized by a wet chemical method wherein the reduction of GO and intimate interfacial contact between ZnO NPs and rGO were achieved simultaneously. The sensing of ethanol was explicated by means of current-potential (I-V) technique. The sensor exhibited reproducible response with insignificant variations in current tested across multiple electrodes and responded linearly to ethanol in the range of 0.5-5 mM (R 2 = 0.957). The sensor also showed lower limit of detection. The significant improvement in sensitivity is attributed to the improved surface activity and faster charge separation owing to formation of the nano-Schottky barrier at rGO-ZnO interface. This approach is beneficial as it eliminates the use of conducting binder along with the functional material for ethanol sensing. This ultra-sensitive, binder free rGO-ZnO-based sensor offers a simple, low cost approach for ethanol detection in food, pharmaceutical, bio fuel industries, and environmental analyses. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2017.2787538 |