A Novel Active Gate Driver for Improving Switching Performance of High-Power SiC MOSFET Modules
Featuring higher switching speed and lower losses, the silicon carbide mosfet s (SiC mosfet s) are widely used in higher power density and higher efficiency power electronic applications as a new solution. However, the increase of the switching speed induces oscillations, overshoots, electromagnetic...
Saved in:
Published in | IEEE transactions on power electronics Vol. 34; no. 8; pp. 7775 - 7787 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0885-8993 1941-0107 |
DOI | 10.1109/TPEL.2018.2878779 |
Cover
Loading…
Abstract | Featuring higher switching speed and lower losses, the silicon carbide mosfet s (SiC mosfet s) are widely used in higher power density and higher efficiency power electronic applications as a new solution. However, the increase of the switching speed induces oscillations, overshoots, electromagnetic interference (EMI), and even additional losses. In this paper, a novel active gate driver (AGD) for high-power SiC mosfet s is presented to fully utilize its potential of high-speed characteristic under different operation temperatures and load currents. The principle of the AGD is based on drive voltage decrement during the voltage and current slopes since high dV/dt and dI/dt are the source of the overshoots, oscillations, and EMI problems. In addition, the optimal drive voltage switching delay time has been analyzed and calculated considering a tradeoff between switching losses and switching stresses. Compared to conventional gate driver with fixed drive voltage, the proposed AGD has the capability of suppressing the overshoots, oscillations, and reducing losses without compromising the EMI. Finally, the switching performance of the AGD was experimentally verified on 1.2 kV/300 A and 1.7 kV/300 A SiC mosfet s in double pulse test under different operation temperatures and load currents. In addition, an EMI discussion and cost analysis were realized for AGD. |
---|---|
AbstractList | Featuring higher switching speed and lower losses, the silicon carbide mosfet s (SiC mosfet s) are widely used in higher power density and higher efficiency power electronic applications as a new solution. However, the increase of the switching speed induces oscillations, overshoots, electromagnetic interference (EMI), and even additional losses. In this paper, a novel active gate driver (AGD) for high-power SiC mosfet s is presented to fully utilize its potential of high-speed characteristic under different operation temperatures and load currents. The principle of the AGD is based on drive voltage decrement during the voltage and current slopes since high dV/dt and dI/dt are the source of the overshoots, oscillations, and EMI problems. In addition, the optimal drive voltage switching delay time has been analyzed and calculated considering a tradeoff between switching losses and switching stresses. Compared to conventional gate driver with fixed drive voltage, the proposed AGD has the capability of suppressing the overshoots, oscillations, and reducing losses without compromising the EMI. Finally, the switching performance of the AGD was experimentally verified on 1.2 kV/300 A and 1.7 kV/300 A SiC mosfet s in double pulse test under different operation temperatures and load currents. In addition, an EMI discussion and cost analysis were realized for AGD. Featuring higher switching speed and lower losses, the silicon carbide mosfet s (SiC mosfet s) are widely used in higher power density and higher efficiency power electronic applications as a new solution. However, the increase of the switching speed induces oscillations, overshoots, electromagnetic interference (EMI), and even additional losses. In this paper, a novel active gate driver (AGD) for high-power SiC mosfet s is presented to fully utilize its potential of high-speed characteristic under different operation temperatures and load currents. The principle of the AGD is based on drive voltage decrement during the voltage and current slopes since high dV/dt and dI/dt are the source of the overshoots, oscillations, and EMI problems. In addition, the optimal drive voltage switching delay time has been analyzed and calculated considering a tradeoff between switching losses and switching stresses. Compared to conventional gate driver with fixed drive voltage, the proposed AGD has the capability of suppressing the overshoots, oscillations, and reducing losses without compromising the EMI. Finally, the switching performance of the AGD was experimentally verified on 1.2 kV/300 A and 1.7 kV/300 A SiC mosfet s in double pulse test under different operation temperatures and load currents. In addition, an EMI discussion and cost analysis were realized for AGD. |
Author | Yang, Yuan Wen, Yang Gao, Yong |
Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0002-4225-5226 surname: Yang fullname: Yang, Yuan email: yangyuan@xaut.edu.cn organization: Department of Electronic Engineering, Xi'an University of Technology, Xi'an, China – sequence: 2 givenname: Yang orcidid: 0000-0002-9246-1212 surname: Wen fullname: Wen, Yang email: wyxput@163.com organization: Department of Electronic Engineering, Xi'an University of Technology, Xi'an, China – sequence: 3 givenname: Yong surname: Gao fullname: Gao, Yong email: gaoy@xaut.edu.cn organization: Department of Electrical Engineering, Xi'an Polytechnic University, Xi'an, China |
BookMark | eNp9kEFPAjEQhRuDiYD-AOOliefFTrfddo8EEUxASdBzU0sLJbDF7gLx31uC8eDB00zmzTdv8jqoVYXKInQLpAdAyoe32XDSowRkj0ohhSgvUBtKBhkBIlqoTaTkmSzL_Ap16npNCDBOoI1UH7-Eg93gvmn8weKRbix-jKmN2IWIn7e7GA6-WuL50TdmdepmNiZpqytjcXB47JerbBaOiZj7AZ6-zp-Gb3gaFvuNra_RpdOb2t781C56T-pgnE1eR8-D_iQztMybTLjS5LKgDqhxaQQcqDREc1ssjGO5gcIBZ5xJ9iEYyZkGLUxJhKSyEHyRd9H9-W5693Nv60atwz5WyVJRmoMsJBMsbcF5y8RQ19E6tYt-q-OXAqJOOapTjuqUo_rJMTHiD2N8oxsfqiZqv_mXvDuT3lr76yQ5cFLQ_BtLY3_- |
CODEN | ITPEE8 |
CitedBy_id | crossref_primary_10_1007_s43236_023_00762_5 crossref_primary_10_1109_TIE_2024_3395787 crossref_primary_10_1109_TPEL_2024_3371070 crossref_primary_10_1007_s43236_020_00132_5 crossref_primary_10_1109_JESTPE_2022_3216277 crossref_primary_10_1109_TPEL_2021_3127516 crossref_primary_10_1016_j_microrel_2022_114866 crossref_primary_10_3390_en16165984 crossref_primary_10_1109_TIA_2019_2910789 crossref_primary_10_1109_TIA_2024_3446748 crossref_primary_10_1007_s43236_019_00026_1 crossref_primary_10_1109_JESTPE_2019_2953272 crossref_primary_10_1109_TPEL_2020_3002188 crossref_primary_10_1109_JEDS_2024_3349684 crossref_primary_10_3390_en17091997 crossref_primary_10_1088_1361_6463_ad8759 crossref_primary_10_3390_app14051713 crossref_primary_10_1109_TPEL_2023_3321675 crossref_primary_10_1109_TIA_2024_3430235 crossref_primary_10_1109_TPEL_2022_3151776 crossref_primary_10_1049_pel2_12834 crossref_primary_10_1109_TIA_2022_3183029 crossref_primary_10_1109_TPEL_2024_3435432 crossref_primary_10_1109_ACCESS_2020_3031693 crossref_primary_10_1109_TPEL_2024_3382335 crossref_primary_10_1109_TPEL_2024_3383666 crossref_primary_10_1109_OJIA_2023_3291637 crossref_primary_10_1109_TIE_2024_3433436 crossref_primary_10_1049_pel2_12146 crossref_primary_10_1109_OJPEL_2024_3478178 crossref_primary_10_1109_TPEL_2022_3213440 crossref_primary_10_3390_app11052210 crossref_primary_10_3390_s22051774 crossref_primary_10_1002_cta_4003 crossref_primary_10_1109_TPEL_2024_3399556 crossref_primary_10_1109_TPEL_2024_3522068 crossref_primary_10_1109_TPEL_2020_2995778 crossref_primary_10_1109_TPEL_2024_3452236 crossref_primary_10_1109_TPEL_2023_3268129 crossref_primary_10_3390_en14061690 crossref_primary_10_1109_TIE_2024_3366201 crossref_primary_10_1109_TPEL_2020_2993947 crossref_primary_10_1109_TPEL_2022_3221187 crossref_primary_10_1109_JESTPE_2021_3055145 crossref_primary_10_1109_TPS_2020_3039372 crossref_primary_10_1007_s43236_022_00470_6 crossref_primary_10_1109_TIE_2019_2958301 crossref_primary_10_1016_j_microrel_2022_114806 crossref_primary_10_1109_TCSI_2023_3233956 crossref_primary_10_1587_elex_19_20220267 crossref_primary_10_1109_JESTPE_2022_3213180 crossref_primary_10_1109_TPEL_2024_3453438 crossref_primary_10_1049_pel2_12698 crossref_primary_10_3390_math11092137 crossref_primary_10_1109_TCSII_2022_3213556 crossref_primary_10_3389_fenrg_2021_788689 crossref_primary_10_1109_JESTPE_2024_3385477 crossref_primary_10_1109_TPEL_2022_3201018 crossref_primary_10_1109_TPEL_2024_3439768 crossref_primary_10_1109_JESTPE_2020_3008344 crossref_primary_10_1109_OJPEL_2023_3250086 crossref_primary_10_1109_TPEL_2024_3520548 crossref_primary_10_1109_TPEL_2022_3155280 crossref_primary_10_1109_ACCESS_2021_3065685 crossref_primary_10_1109_TPEL_2021_3090031 crossref_primary_10_3390_electronics10020159 crossref_primary_10_1109_OJIES_2023_3326380 crossref_primary_10_1109_TPEL_2022_3180387 crossref_primary_10_1109_JESTPE_2020_2986097 crossref_primary_10_1049_pel2_12485 crossref_primary_10_1109_TPEL_2023_3279674 crossref_primary_10_1109_ACCESS_2021_3054514 crossref_primary_10_1109_JSSC_2024_3386880 crossref_primary_10_1088_1742_6596_2584_1_012071 crossref_primary_10_1109_OJPEL_2022_3209334 crossref_primary_10_1109_TPEL_2020_3006071 crossref_primary_10_1587_transele_2021ECP5030 |
Cites_doi | 10.1109/TPEL.2016.2569424 10.24295/CPSSTPEA.2018.00008 10.1109/TPEL.2017.2655491 10.1109/JESTPE.2017.2721429 10.1109/TPEL.2017.2731861 10.1109/ECCE.2017.8096858 10.1109/JESTPE.2016.2587358 10.1109/APEC.2015.7104436 10.1109/TPEL.2014.2352863 10.1109/ECCE.2017.8096861 10.1109/JESTPE.2016.2638019 10.1109/TIE.2015.2491880 10.1109/IECON.2017.8216852 10.1109/APEC.2018.8341530 10.1109/TIE.2017.2719603 10.1109/ICIT.2017.7913070 10.1109/PEDES.2016.7914372 10.1109/TIA.2017.2784802 10.1109/TPEL.2015.2432012 10.1109/ECCE.2017.8095948 10.1109/APEC.2015.7104438 10.23919/EPE17ECCEEurope.2017.8099098 10.1109/TPEL.2014.2332811 10.1109/TIE.2013.2240636 10.1109/TPEL.2014.2327014 10.1109/TPEL.2015.2420660 10.1109/ECCE.2017.8096698 10.1109/TIE.2018.2793231 10.1109/TED.2017.2742542 10.1109/IFWS.2017.8246008 10.1109/ECCE.2012.6342590 10.1109/TIA.2017.2780175 10.1049/iet-pel.2017.0535 10.1109/TIA.2018.2796587 10.1109/TPEL.2017.2669879 10.1109/JESTPE.2017.2720731 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
DOI | 10.1109/TPEL.2018.2878779 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0107 |
EndPage | 7787 |
ExternalDocumentID | 10_1109_TPEL_2018_2878779 8515062 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51477138 funderid: 10.13039/501100001809 – fundername: key Research and Development Program of Shaanxi in Shaanxi, China grantid: 2017ZDXM-GY-130 – fundername: College talent service enterprise engineering grantid: 2017080CG/RC043(XALG009) |
GroupedDBID | -~X 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TAF TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
ID | FETCH-LOGICAL-c293t-7f9c3862f12cfc2915128c0a5e6dcf43c16f1545484b74034a1a7c907828675d3 |
IEDL.DBID | RIE |
ISSN | 0885-8993 |
IngestDate | Mon Jun 30 02:26:51 EDT 2025 Thu Apr 24 23:02:07 EDT 2025 Tue Jul 01 02:39:05 EDT 2025 Wed Aug 27 02:46:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-7f9c3862f12cfc2915128c0a5e6dcf43c16f1545484b74034a1a7c907828675d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4225-5226 0000-0002-9246-1212 |
PQID | 2231868474 |
PQPubID | 37080 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2231868474 ieee_primary_8515062 crossref_primary_10_1109_TPEL_2018_2878779 crossref_citationtrail_10_1109_TPEL_2018_2878779 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power electronics |
PublicationTitleAbbrev | TPEL |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 lobsiger (ref36) 2014 |
References_xml | – ident: ref16 doi: 10.1109/TPEL.2016.2569424 – ident: ref18 doi: 10.24295/CPSSTPEA.2018.00008 – ident: ref29 doi: 10.1109/TPEL.2017.2655491 – ident: ref15 doi: 10.1109/JESTPE.2017.2721429 – ident: ref33 doi: 10.1109/TPEL.2017.2731861 – ident: ref28 doi: 10.1109/ECCE.2017.8096858 – ident: ref10 doi: 10.1109/JESTPE.2016.2587358 – ident: ref13 doi: 10.1109/APEC.2015.7104436 – ident: ref5 doi: 10.1109/TPEL.2014.2352863 – ident: ref12 doi: 10.1109/ECCE.2017.8096861 – ident: ref9 doi: 10.1109/JESTPE.2016.2638019 – ident: ref23 doi: 10.1109/TIE.2015.2491880 – ident: ref11 doi: 10.1109/IECON.2017.8216852 – ident: ref20 doi: 10.1109/APEC.2018.8341530 – ident: ref32 doi: 10.1109/TIE.2017.2719603 – ident: ref7 doi: 10.1109/ICIT.2017.7913070 – ident: ref8 doi: 10.1109/PEDES.2016.7914372 – ident: ref25 doi: 10.1109/TIA.2017.2784802 – ident: ref2 doi: 10.1109/TPEL.2015.2432012 – ident: ref21 doi: 10.1109/ECCE.2017.8095948 – ident: ref35 doi: 10.1109/APEC.2015.7104438 – ident: ref17 doi: 10.23919/EPE17ECCEEurope.2017.8099098 – ident: ref37 doi: 10.1109/TPEL.2014.2332811 – ident: ref22 doi: 10.1109/TIE.2013.2240636 – ident: ref34 doi: 10.1109/TPEL.2014.2327014 – ident: ref4 doi: 10.1109/TPEL.2015.2420660 – ident: ref27 doi: 10.1109/ECCE.2017.8096698 – ident: ref1 doi: 10.1109/TIE.2018.2793231 – ident: ref3 doi: 10.1109/TED.2017.2742542 – ident: ref6 doi: 10.1109/IFWS.2017.8246008 – ident: ref14 doi: 10.1109/ECCE.2012.6342590 – year: 2014 ident: ref36 article-title: Closed-Loop IGBT gate driver and current balancing – ident: ref31 doi: 10.1109/TIA.2017.2780175 – ident: ref19 doi: 10.1049/iet-pel.2017.0535 – ident: ref24 doi: 10.1109/TIA.2018.2796587 – ident: ref30 doi: 10.1109/TPEL.2017.2669879 – ident: ref26 doi: 10.1109/JESTPE.2017.2720731 |
SSID | ssj0014501 |
Score | 2.5941055 |
Snippet | Featuring higher switching speed and lower losses, the silicon carbide mosfet s (SiC mosfet s) are widely used in higher power density and higher efficiency... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7775 |
SubjectTerms | Active gate driver (AGD) Cost analysis Delay time analysis Electric potential Electromagnetic interference electromagnetic interference (EMI) Gate drivers Logic gates MOSFET MOSFETs Oscillations Oscillators overshoots Power efficiency Silicon carbide silicon carbide (SiC) <sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfet Switches Switching |
Title | A Novel Active Gate Driver for Improving Switching Performance of High-Power SiC MOSFET Modules |
URI | https://ieeexplore.ieee.org/document/8515062 https://www.proquest.com/docview/2231868474 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA26J33wLs4befBJzEyXdE0fhxdEnA62gW-lSRMQxypbp-Cv9_vSroqK-NaWpJR-uZyTnHyHkBOpg0wLFzNllWYSIDpT2rQZF-3IYci5t_Pp3XduRvL2MXxcImf1WRhrrRef2RZe-r38LDdzXCo7B3QQchxwl4G4lWe16h0DGXqrY-g0IQMOIaodzIDH58P-1R2KuFQL6IGKULX1ZQ7ypio_RmI_vVyvk97iw0pVyXNrXuiWef-Ws_G_X75B1iqcSbtlw9gkS3ayRVa_ZB_cJkmX3uevFgr5MY_iQhq9nKJQgwKUpfV6Ax28PRVec0n7n-cMaO4oqkRYH43W6ODpgvYeBtdXQ9rLs_nYznbICO4ubljlt8AMTPoFi1xsBDAcF7SNg0cIBpThaWg7mXFSmKDjEHFJJXUkuZBpkEYmRpChgHdkYpc0JvnE7hHaiYVVPItS5SKpQ55q4OGpDlMdy0wErkn4IgKJqZKRoyfGOPGkhMcJBi3BoCVV0JrktK7yUmbi-KvwNgahLlj9_yY5XIQ5qfrqLAGAhJ4BMpL7v9c6ICvw7riU_R2SRjGd2yOAIoU-9m3wA-RU120 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH6atgNwgMFAFDbwgRPCnVM7jXOc9kMFmlKpnbSbFTu2NG1q0JZuEn897zlpmAAhbklkK5Y_2-979uf3AD4om1RWhpxrry1XSNG5tm7EhRxlgSAXMZ1PMRtPztWXi_RiCz71d2G891F85of0GM_yq9qtaavsENlBKmjB3UG7nybtba3-zEClMdkxTpuUoxchuzPMROSHy_nplGRceogOgs5It_XACsW0Kn-sxdHAnD2DYtO0VldyNVw3duh-_Ba18X_bvgtPO6bJjtqh8Ry2_OoFPHkQf3APzBGb1XceC8VVj9FWGju5IakGQzLL-h0Htri_bKLqks1_3TRgdWCkE-FzSrXGFpfHrPi2ODtdsqKu1tf-9iWc49vxhHcZF7hDs9_wLOROoo8TkpEL-InogHaiTP24ckFJl4wDcS6llc2UkKpMyszlRDM0eh6VfAXbq3rlXwMb59JrUWWlDpmyqSgteuKlTUubq0omYQBig4BxXThyyopxbaJbInJDoBkCzXSgDeBjX-V7G4vjX4X3CIS-YNf_A9jfwGy62XprkCJR1gCVqTd_r_UeHk2WxdRMP8--voXH-J-8FQHuw3Zzs_YHSEwa-y6Ox59NANq2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Active+Gate+Driver+for+Improving+Switching+Performance+of+High-Power+SiC+MOSFET+Modules&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Yang%2C+Yuan&rft.au=Wen%2C+Yang&rft.au=Gao%2C+Yong&rft.date=2019-08-01&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=34&rft.issue=8&rft.spage=7775&rft.epage=7787&rft_id=info:doi/10.1109%2FTPEL.2018.2878779&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPEL_2018_2878779 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |