Performance-Based Iterative Learning Control for Task-Oriented Rehabilitation: A Pilot Study in Robot-Assisted Bilateral Training
Active participation from human subjects can enhance the effectiveness of robot-assisted rehabilitation. Developing interactive control strategies for customized assistance is therefore essential for encouraging human-robot engagement. However, existing human-robot interactive control strategies lac...
Saved in:
Published in | IEEE transactions on cognitive and developmental systems Vol. 15; no. 4; pp. 2031 - 2040 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2379-8920 2379-8939 |
DOI | 10.1109/TCDS.2021.3072096 |
Cover
Loading…
Summary: | Active participation from human subjects can enhance the effectiveness of robot-assisted rehabilitation. Developing interactive control strategies for customized assistance is therefore essential for encouraging human-robot engagement. However, existing human-robot interactive control strategies lack precise evaluation indicators with effective convergence method to steadily and rapidly customize appropriate assistance during task-oriented training. This study proposes a performance-based iterative learning control algorithm for robot-assisted training, which aims at providing subject-specific robotic assistance to encourage active participation. Three performance indicators based on a Fugl-Meyer assessment (FMA) regression model are introduced to associate clinical scales with robot-based measures, and a fuzzy logic is employed for comprehensive performance evaluation. To increase efficient training time, a piecewise learning rate-based iterative law is applied to quickly converge to a subject-specific control parameter session by session. The proposed strategy is preliminarily estimated for a case of bilateral upper limb training with an end-effector-based robotic system. The experimental results with human subjects indicate that the proposed strategy can obtain appropriate parameters after only several iterations and adapt to random perturbations (like muscle fatigue). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2379-8920 2379-8939 |
DOI: | 10.1109/TCDS.2021.3072096 |