Multi-Scale Dynamic Convolutional Network for Knowledge Graph Embedding

Knowledge graphs are large graph-structured knowledge bases with incomplete or partial information. Numerous studies have focused on knowledge graph embedding to identify the embedded representation of entities and relations, thereby predicting missing relations between entities. Previous embedding...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 34; no. 5; pp. 2335 - 2347
Main Authors Zhang, Zhaoli, Li, Zhifei, Liu, Hai, Xiong, Neal N.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Knowledge graphs are large graph-structured knowledge bases with incomplete or partial information. Numerous studies have focused on knowledge graph embedding to identify the embedded representation of entities and relations, thereby predicting missing relations between entities. Previous embedding models primarily regard (subject entity, relation, and object entity) triplet as translational distance or semantic matching in vector space. However, these models only learn a few expressive features and hard to handle complex relations, i.e., 1-to-N, N-to-1, and N-to-N, in knowledge graphs. To overcome these issues, we introduce a multi-scale dynamic convolutional network (M-DCN) model for knowledge graph embedding. This model features topnotch performance and an ability to generate richer and more expressive feature embeddings than its counterparts. The subject entity and relation embeddings in M-DCN are composed in an alternating pattern in the input layer, which helps extract additional feature interactions and increase the expressiveness. Multi-scale filters are generated in the convolution layer to learn different characteristics among input embeddings. Specifically, the weights of these filters are dynamically related to each relation to model complex relations. The performance of M-DCN on the five benchmark datasets is tested via experiments. Results show that the model can effectively handle complex relations and achieve state-of-the-art link prediction results on most evaluation metrics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2020.3005952