A3C-Based Intelligent Event-Triggering Control of Networked Nonlinear Unmanned Marine Vehicles Subject to Hybrid Attacks
This paper is concerned with the intelligent event-triggering-based positioning control of networked unmanned marine vehicle (UMV) systems with hybrid attacks, where the UMV and control station is connected by a communication network and the DoS attack and Deception attack are studied. Firstly, a st...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 8; pp. 12921 - 12934 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper is concerned with the intelligent event-triggering-based positioning control of networked unmanned marine vehicle (UMV) systems with hybrid attacks, where the UMV and control station is connected by a communication network and the DoS attack and Deception attack are studied. Firstly, a stochastic switched Takagi-Sugeno (T-S) fuzzy system model is proposed for the networked nonlinear UMV systems subject to aperiodic DoS attack and random Deception attack. Then, a novel asynchronous advantage actor-critic (A3C) learning-based event-triggering approach is introduced to alleviate the communication load. By using the Lyapunov stability theory and switched system analysis method, the mean-square exponential stability condition of the closed-loop system and the design method of observer-based controller are devised. Finally, an example of a networked UMV system is given to verify the effectiveness of the proposed resilient control strategy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2021.3118648 |