Optimal Power Allocation Scheme for Non-Orthogonal Multiple Access With \alpha -Fairness

This paper investigates the optimal power allocation scheme for sum throughput maximization of non-orthogonal multiple access (NOMA) system with α-fairness. In contrast to the existing fairness NOMA models, α-fairness can only utilize a single scalar to achieve different user fairness levels. Two di...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 35; no. 10; pp. 2357 - 2369
Main Authors Peng Xu, Cumanan, Kanapathippillai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper investigates the optimal power allocation scheme for sum throughput maximization of non-orthogonal multiple access (NOMA) system with α-fairness. In contrast to the existing fairness NOMA models, α-fairness can only utilize a single scalar to achieve different user fairness levels. Two different channel state information at the transmitter (CSIT) assumptions are considered, namely, statistical and perfect CSIT. For statistical CSIT, fixed target data rates are predefined, and the power allocation problem is solved for sum throughput maximization with α-fairness, through characterizing several properties of the optimal power allocation solution. For perfect CSIT, the optimal power allocation is determined to maximize the instantaneous sum rate with α-fairness, where user rates are adapted according to the instantaneous channel state information (CSI). In particular, a simple alternate optimization algorithm is proposed, which is demonstrated to yield the optimal solution. Numerical results reveal that, at the same fairness level, NOMA significantly outperforms the conventional orthogonal multiple access for both the scenarios with statistical and perfect CSIT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2017.2729780