A 17.7-19.2-GHz Receiver Front End With an Adaptive Analog Temperature-Compensation Scheme

This article presents an eight-element 17.719.2-GHz receiver front end with 12 concurrent beams in a 65-nm CMOS technology. Each output beam utilizes a temperature-compensation variable-gain amplifier (TC-VGA) to minimize the temperature-induced gain variation. The concept of the proposed TC-VGA and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 71; no. 3; pp. 1 - 15
Main Authors Li, Min, Gao, Huiyan, Li, Nayu, Wang, Shaogang, Zhang, Zijiang, Chen, Peidi, Wei, Ningjie, Yu, Xiaopeng, Gu, Qun Jane, Song, Chunyi, Xu, Zhiwei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article presents an eight-element 17.719.2-GHz receiver front end with 12 concurrent beams in a 65-nm CMOS technology. Each output beam utilizes a temperature-compensation variable-gain amplifier (TC-VGA) to minimize the temperature-induced gain variation. The concept of the proposed TC-VGA and the realization of corresponding adaptive analog control are introduced in detail. The front-end architecture and circuit-level design to enable a flat wideband gain response, precise phase and amplitude control, low power consumption, and adaptive analog temperature compensation are presented. Wafer probing is conducted to measure the performance of the receiver front end. The measured gain-temperature coefficient is <inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula>0.005 dB/<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>C from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>15<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>C to 85 <inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>C at 17.719.2 GHz, while the counterpart without temperature compensation is <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>0.1 dB/<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>C. The chip demonstrates a 28-dB power gain, a 26% 3-dB fractional bandwidth, a 3.24.1-dB noise figure (NF), and a <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>27.4-dBm input 1-dB gain compression point (IP<inline-formula> <tex-math notation="LaTeX">_{\mathrm{1\,dB}}</tex-math> </inline-formula>) for each element. In addition, each channel provides 7-bit phase-shifting resolution and 6-bit attenuation for a 15.75-dB gain range with a <inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula>1.5<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula> root-mean-square (rms) phase error, and a <inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula>0.22-dB rms amplitude error. The chip occupies 4.65 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 2.77 mm<inline-formula> <tex-math notation="LaTeX">^2</tex-math> </inline-formula> area with pads, equivalent to 1.61 mm<inline-formula> <tex-math notation="LaTeX">^2</tex-math> </inline-formula> per element (for two beams), and consumes 37.2 mW per element per beam. To the best of our knowledge, the receiver front end demonstrates the minimum gain variation with temperature among silicon RF-beamforming front ends.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2022.3215558