Physical Layer based Message Authentication with Secure Channel Codes
In this paper, we investigate physical (PHY) layer message authentication to combat adversaries with infinite computational capacity. Specifically, a PHY-layer authentication framework over a wiretap channel (<inline-formula><tex-math notation="LaTeX">W_1,W_2</tex-math> &...
Saved in:
Published in | IEEE transactions on dependable and secure computing Vol. 17; no. 5; pp. 1079 - 1093 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
IEEE
01.09.2020
IEEE Computer Society |
Subjects | |
Online Access | Get full text |
ISSN | 1545-5971 1941-0018 |
DOI | 10.1109/TDSC.2018.2846258 |
Cover
Summary: | In this paper, we investigate physical (PHY) layer message authentication to combat adversaries with infinite computational capacity. Specifically, a PHY-layer authentication framework over a wiretap channel (<inline-formula><tex-math notation="LaTeX">W_1,W_2</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi>W</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>W</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq1-2846258.gif"/> </inline-formula>) is proposed to achieve information-theoretic security with the same key. We develop a theorem to reveal the requirements/conditions for the authentication framework to be information-theoretic secure for authenticating a polynomial number of messages in terms of <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="zhang-ieq2-2846258.gif"/> </inline-formula>. Based on this theorem, we design an authentication protocol that can guarantee the security requirements, and prove its authentication rate can approach infinity when <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="zhang-ieq3-2846258.gif"/> </inline-formula> goes to infinity. Furthermore, we design and implement a feasible and efficient message authentication protocol over binary symmetric wiretap channel (BSWC) by using Linear Feedback Shifting Register based (LFSR-based) hash functions and strong secure polar code. Through extensive simulations, it is demonstrated that the proposed protocol can achieve high authentication rate, with low time cost and authentication error rate. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1545-5971 1941-0018 |
DOI: | 10.1109/TDSC.2018.2846258 |