Physical Layer based Message Authentication with Secure Channel Codes

In this paper, we investigate physical (PHY) layer message authentication to combat adversaries with infinite computational capacity. Specifically, a PHY-layer authentication framework over a wiretap channel (<inline-formula><tex-math notation="LaTeX">W_1,W_2</tex-math> &...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on dependable and secure computing Vol. 17; no. 5; pp. 1079 - 1093
Main Authors Chen, Dajiang, Zhang, Ning, Cheng, Nan, Zhang, Kuan, Qin, Zhiguang, Shen, Xuemin
Format Journal Article
LanguageEnglish
Published Washington IEEE 01.09.2020
IEEE Computer Society
Subjects
Online AccessGet full text
ISSN1545-5971
1941-0018
DOI10.1109/TDSC.2018.2846258

Cover

More Information
Summary:In this paper, we investigate physical (PHY) layer message authentication to combat adversaries with infinite computational capacity. Specifically, a PHY-layer authentication framework over a wiretap channel (<inline-formula><tex-math notation="LaTeX">W_1,W_2</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi>W</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>W</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq1-2846258.gif"/> </inline-formula>) is proposed to achieve information-theoretic security with the same key. We develop a theorem to reveal the requirements/conditions for the authentication framework to be information-theoretic secure for authenticating a polynomial number of messages in terms of <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="zhang-ieq2-2846258.gif"/> </inline-formula>. Based on this theorem, we design an authentication protocol that can guarantee the security requirements, and prove its authentication rate can approach infinity when <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="zhang-ieq3-2846258.gif"/> </inline-formula> goes to infinity. Furthermore, we design and implement a feasible and efficient message authentication protocol over binary symmetric wiretap channel (BSWC) by using Linear Feedback Shifting Register based (LFSR-based) hash functions and strong secure polar code. Through extensive simulations, it is demonstrated that the proposed protocol can achieve high authentication rate, with low time cost and authentication error rate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-5971
1941-0018
DOI:10.1109/TDSC.2018.2846258