Time-resolved Spectral Properties of Fermi-GBM Bright Long Gamma-Ray Bursts

Abstract The prompt emission mechanism of gamma-ray bursts (GRBs) is still unclear, and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes. We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by F...

Full description

Saved in:
Bibliographic Details
Published inResearch in astronomy and astrophysics Vol. 24; no. 2; pp. 25006 - 25021
Main Authors Wang, Wan-Kai, Xie, Wei, Gao, Zhi-Fu, Xiao, Shuo, Dong, Ai-Jun, Zhang, Bin, Zhi, Qi-Jun
Format Journal Article
LanguageEnglish
Published Beijing National Astromonical Observatories, CAS and IOP Publishing 01.02.2024
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The prompt emission mechanism of gamma-ray bursts (GRBs) is still unclear, and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes. We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by Fermi/Gamma-ray Burst Monitor. A total of 1490 spectra were obtained and their properties were studied using a typical Band-shape model. First, the parameter distributions of the time-resolved spectrum are given as follows: the low-energy spectral index α ∼ − 0.72, high-energy spectral index β ∼ − 2.42, the peak energy E p ∼ 221.69 keV, and the energy flux F ∼ 7.49 × 10 −6 erg cm −2 s −1 . More than 80% of the bursts exhibit the hardest low-energy spectral index α max exceeding the synchrotron limit (−2/3). Second, the evolution patterns of α and E p were statistically analyzed. The results show that for multi-pulse GRBs the intensity-tracking pattern is more common than the hard-to-soft pattern in the evolution of both E p and α . The hard-to-soft pattern is generally shown in single-pulse GRBs or in the initial pulse of multi-pulse GRBs. Finally, we found a significant positive correlation between F and E p , with half of the samples exhibiting a positive correlation between F and α . We discussed the spectral evolution of different radiation models. The diversity of spectral evolution patterns indicates that there may be more than one radiation mechanism occurring in the GRB radiation process, including photospheric radiation and synchrotron radiation. However, it may also involve only one radiation mechanism, but more complicated physical details need to be considered.
Bibliography:RAA-2023-0320.R1
ISSN:1674-4527
2397-6209
DOI:10.1088/1674-4527/ad16af