Rain Detection From X-Band Marine Radar Images: A Support Vector Machine-Based Approach

Since rain alters the histogram pattern of radar images, rain-contaminated radar data can be identified. In this article, a support vector machine (SVM)-based method for rain detection using X-band marine radar images is presented. First, the normalized histogram bin values for each image are extrac...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 58; no. 3; pp. 2115 - 2123
Main Authors Chen, Xinwei, Huang, Weimin, Zhao, Chen, Tian, Yingwei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Since rain alters the histogram pattern of radar images, rain-contaminated radar data can be identified. In this article, a support vector machine (SVM)-based method for rain detection using X-band marine radar images is presented. First, the normalized histogram bin values for each image are extracted and combined into feature vector. Then, SVMs are employed to classify between rain-free and rain-contaminated images. Radar images and simultaneous rain rate data collected from a sea trial in North Atlantic Ocean are utilized for model training and testing. Comparison with the zero pixel percentage (ZPP) threshold method shows that the SVM-based method obtains higher detection accuracy, with 98.4% for the Decca radar data and 99.7% for the Furuno radar. It is also found that as the total number of bins does not significantly affect detection accuracy, the proposed method can be applied to different radar systems directly with a suitable number of bins. In addition, compared to the ZPP threshold method, the SVM-based method proves to be more robust even with limited training samples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2019.2953143