Synthesized polymeric nanocomposites with enhanced optical and electrical properties based on gold nanoparticles for optoelectronic applications
In the present work, gold nanoparticles (Au-NPs) were synthesized in two ways: plant extract and laser ablation techniques. Then, Au-NPs were added to (PVP/PVA/CMC) blend (TB) to produce novel nanocomposites using the solution casting technique. X-ray diffraction analysis, Ultraviolet and visible sp...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 34; no. 1; p. 46 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the present work, gold nanoparticles (Au-NPs) were synthesized in two ways: plant extract and laser ablation techniques. Then, Au-NPs were added to (PVP/PVA/CMC) blend (TB) to produce novel nanocomposites using the solution casting technique. X-ray diffraction analysis, Ultraviolet and visible spectroscopy, and transmission electron microscopy provided conclusive evidence for preparing Au-NPs through the above methods. The optical, structural, and dielectric properties of the prepared samples were prudently investigated and confirmed their semicrystalline nature. TEM study concluded that Au-NPs are more uniformly distributed in the TB/AuNPs-biosynthesized (TBAu-B) matrix than in the TB/Au-NPs prepared by laser ablation (TBAu-L) matrix. The decrease in interatomic distances increases the refractive index with an enhancement in optical properties. The change in loss tangent provided a deeper discernment into the relaxation dynamics that arose inside the current films. The electric modulus formalism verified the non-Debye behavior of charge carriers inside the TB-based nanocomposite samples. It also demonstrated a remarkable capacitive feature of the nanocomposite films. The dielectric characteristics of the TBAu-B nanocomposite sample have improved, where AC electrical conductivity reached 1.58 × 10
−3
S/cm. Because of this favorable enhancement, the TBAu-B nanocomposite has the potential to be utilized in optoelectronic applications such as sensors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-022-09402-3 |