A 510-nW Wake-Up Keyword-Spotting Chip Using Serial-FFT-Based MFCC and Binarized Depthwise Separable CNN in 28-nm CMOS
We propose a sub-<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> always-ON keyword spotting (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>KWS) chip for audio wake-...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 56; no. 1; pp. 151 - 164 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a sub-<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> always-ON keyword spotting (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>KWS) chip for audio wake-up systems. It is mainly composed of a neural network (NN) and a feature extraction (FE) circuit. For significantly reducing the memory footprint and computational load, four techniques are used to achieve ultra-low-power consumption: 1) a serial-FFT-based Mel-frequency cepstrum coefficient circuit is designed for FE, instead of the common parallel FFT. 2) A small-sized binarized depthwise separable convolutional NN (DSCNN) is designed as the classifier. 3) A framewise incremental computation technique is devised in contrast to the conventional whole-word processing. 4) Reduced computation allows a low system clock frequency, which enables near-threshold voltage operation, and low leakage memory blocks are designed to minimize the leakage power. Implemented in 28-nm CMOS technology, this <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>KWS consumes <inline-formula> <tex-math notation="LaTeX">0.51~\mu \text{W} </tex-math></inline-formula> at a 40-kHz frequency and a 0.41-V supply, with an area of 0.23 mm 2 . Using the Google speech command data set, 97.3% accuracy is reached for a one-word KWS task and 94.6% for a two-word task. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2020.3029097 |