Analysis of floor-to-column pounding of buildings founded on different soil types

The aim of this study is to investigate the effect of the soil type on buildings experiencing floor-to-column pounding during earthquakes. Five buildings with 4-storeys, 6-storeys, and 7-storeys were considered. Three types of the 4-storey building with different total heights were taken into accoun...

Full description

Saved in:
Bibliographic Details
Published inBulletin of earthquake engineering Vol. 20; no. 13; pp. 7241 - 7262
Main Authors Miari, Mahmoud, Jankowski, Robert
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of this study is to investigate the effect of the soil type on buildings experiencing floor-to-column pounding during earthquakes. Five buildings with 4-storeys, 6-storeys, and 7-storeys were considered. Three types of the 4-storey building with different total heights were taken into account which leads to floor-to-column pounding at 1/3, 1/2 and 2/3 of the height of the impacted column. Two pounding scenarios were considered, i.e. pounding between the 4-storey and 6-storey buildings (three cases when collisions occur at 1/3, 1/2 and 2/3 of the height of the impacted column) and pounding between the 4-storey and 7-storey buildings (three cases when collisions occur at 1/3, 1/2 and 2/3 of the height of the impacted column). In the first part of this study, the shear demands of the columns at the contact area were studied and compared with the no pounding case to investigate the effect of the floor-to-column pounding. Then, the shear demands of the columns at the contact area were studied for buildings founded on different soil types to investigate the effect of the soil type on the structural response. The results of this study illustrate that the shear demands of the impacted column significantly increase due to collisions and it exceeds the shear strength in all cases. Moreover, impacted column experiences higher shear demands for buildings founded on the soft clay soil, then for buildings founded on the stiff soil, then for buildings founded on very dense soil and soft rock, and finally for buildings founded on the rock and hard rock.
ISSN:1570-761X
1573-1456
DOI:10.1007/s10518-022-01482-0