A Theoretical Study of Hardware Performance Counters-Based Malware Detection

Malware can range from simple adware to stealthy kernel control-flow modifying rootkits. Although anti-virus software is popular, an ongoing cat-and-mouse cycle of anti-virus development and malware that thwarts the anti-virus has ensued. More recently, trusted hardware-based malware detection techn...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 15; pp. 512 - 525
Main Authors Basu, Kanad, Krishnamurthy, Prashanth, Khorrami, Farshad, Karri, Ramesh
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Malware can range from simple adware to stealthy kernel control-flow modifying rootkits. Although anti-virus software is popular, an ongoing cat-and-mouse cycle of anti-virus development and malware that thwarts the anti-virus has ensued. More recently, trusted hardware-based malware detection techniques are being developed on the premise that it is easier to bypass software-based defenses than hardware-based counterparts. One such approach is the use of hardware performance counters (HPCs) to detect malware for Linux and Android platforms. This paper, for the first time, presents an analytical framework to investigate the security provided by HPC-based malware detection techniques. The HPC readings are periodically monitored over the duration of the program execution for comparison with a golden HPC reading. We develop a mathematical framework to investigate the probability of malware detection, when HPCs are monitored at a pre-determined sampling interval. In other words, given a program, a set of HPCs, and a sampling rate, the framework can be employed to analyze the probability of malware detection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2019.2924549