Robust Optimal Control for Demand Side Management of Multi-Carrier Microgrids

This paper focuses on the control of microgrids where both gas and electricity are provided to the final customer, i.e., multi-carrier microgrids. Hence, these microgrids include thermal and electrical loads, renewable energy sources, energy storage systems, heat pumps, and combined heat and power u...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 19; no. 3; pp. 1 - 14
Main Authors Carli, Raffaele, Cavone, Graziana, Pippia, Tomas, De Schutter, Bart, Dotoli, Mariagrazia
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper focuses on the control of microgrids where both gas and electricity are provided to the final customer, i.e., multi-carrier microgrids. Hence, these microgrids include thermal and electrical loads, renewable energy sources, energy storage systems, heat pumps, and combined heat and power units. The parameters characterizing the multi-carrier microgrid are subject to several disturbances, such as fluctuations in the provision of renewable energy, variability in the electrical and thermal demand, and uncertainties in the electricity and gas pricing. With the aim of accounting for the data uncertainties in the microgrid, we propose a Robust Model Predictive Control (RMPC) approach whose goal is to minimize the total economical cost, while satisfying comfort and energy requests of the final users. In the related literature various RMPC approaches have been proposed, focusing either on electrical or on thermal microgrids. Only a few contributions have addressed the robust control of multi-carrier microgrids. Consequently, we propose an innovative RMPC algorithm that employs on an uncertainty set-based method and that can provide better performance compared with deterministic model predictive controllers applied to multi-carrier microgrids. With the aim of mitigating the conservativeness of the approach, we define suitable robustness factors and we investigate the effects of such factors on the robustness of the solution against variations of the uncertain parameters. We show the effectiveness of the proposed RMPC approach by applying it to a realistic residential multi-carrier microgrid and comparing the obtained results with the ones of a baseline robust method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-5955
1558-3783
DOI:10.1109/TASE.2022.3148856