Mechanisms for Resource Allocation and Pricing in Mobile Edge Computing Systems

In this article, we address the resource allocation and monetization challenges in Mobile Edge Computing (MEC) systems, where users have heterogeneous demands and compete for high quality services. We formulate the Edge Resource Allocation Problem (<inline-formula><tex-math notation="L...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 33; no. 3; pp. 667 - 682
Main Authors Bahreini, Tayebeh, Badri, Hossein, Grosu, Daniel
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we address the resource allocation and monetization challenges in Mobile Edge Computing (MEC) systems, where users have heterogeneous demands and compete for high quality services. We formulate the Edge Resource Allocation Problem (<inline-formula><tex-math notation="LaTeX">{{\sf ERAP}}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">ERAP</mml:mi></mml:math><inline-graphic xlink:href="grosu-ieq1-3099731.gif"/> </inline-formula>) as a Mixed-Integer Linear Program (<inline-formula><tex-math notation="LaTeX">{{\sf MILP}}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">MILP</mml:mi></mml:math><inline-graphic xlink:href="grosu-ieq2-3099731.gif"/> </inline-formula>) and prove that <inline-formula><tex-math notation="LaTeX">{{\sf ERAP}}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">ERAP</mml:mi></mml:math><inline-graphic xlink:href="grosu-ieq3-3099731.gif"/> </inline-formula> is <inline-formula><tex-math notation="LaTeX">{{\sf NP}}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">NP</mml:mi></mml:math><inline-graphic xlink:href="grosu-ieq4-3099731.gif"/> </inline-formula>-hard. To solve the problem efficiently, we propose two resource allocation mechanisms. First, we develop an auction-based mechanism and prove that the proposed mechanism is individually-rational and produces envy-free allocations . We also propose an <inline-formula><tex-math notation="LaTeX">{{\sf LP}}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">LP</mml:mi></mml:math><inline-graphic xlink:href="grosu-ieq5-3099731.gif"/> </inline-formula>-based approximation mechanism that does not guarantee envy-freeness, but it provides solutions that are guaranteed to be within a given distance from the optimal solution. We evaluate the performance of the proposed mechanisms by conducting an extensive experimental analysis on <inline-formula><tex-math notation="LaTeX">{{\sf ERAP}}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">ERAP</mml:mi></mml:math><inline-graphic xlink:href="grosu-ieq6-3099731.gif"/> </inline-formula> instances of various sizes. We use the optimal solutions obtained by solving the <inline-formula><tex-math notation="LaTeX">{{\sf MILP}}</tex-math> <mml:math><mml:mi mathvariant="sans-serif">MILP</mml:mi></mml:math><inline-graphic xlink:href="grosu-ieq7-3099731.gif"/> </inline-formula> model using a commercial solver as benchmarks to evaluate the quality of solutions. Our analysis shows that the proposed mechanisms obtain near optimal solutions for fairly large size instances of the problem in a reasonable amount of time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2021.3099731