Spectral Radon-Fourier Transform for Automotive Radar Applications
Fast Fourier transform (FFT) is one of the fundamental signal processing algorithms widely used in radar applications. The Radon-Fourier transform (RFT) can be seen as an FFT generalization that can overcome some of its limitations. This work derives three spectral RFT (SRFT) based approaches to add...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 57; no. 2; pp. 1046 - 1056 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fast Fourier transform (FFT) is one of the fundamental signal processing algorithms widely used in radar applications. The Radon-Fourier transform (RFT) can be seen as an FFT generalization that can overcome some of its limitations. This work derives three spectral RFT (SRFT) based approaches to address major challenges of the multiple-input multiple-output automotive radars. First, two SRFT-based approaches are derived to increase maximal target detection range by mitigation of target migration in range and direction of arrival, jointly, and by multidwell integration processing, which increases the radar coherent integration time without compromising its detection update rate. Next, SRFT-based approach is proposed to address the cluster-to-track association problem that arises in multiple distributed target tracking scenarios that characterize automotive radar operation in dense urban environments. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2020.3038245 |