Anomaly Detection in Real-Time Multi-Threaded Processes Using Hardware Performance Counters
We propose a novel methodology for real-time monitoring of software running on embedded processors in cyber-physical systems (CPS). The approach uses real-time monitoring of hardware performance counters (HPC) and applies to multi-threaded and interrupt-driven processes typical in programmable logic...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 15; pp. 666 - 680 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a novel methodology for real-time monitoring of software running on embedded processors in cyber-physical systems (CPS). The approach uses real-time monitoring of hardware performance counters (HPC) and applies to multi-threaded and interrupt-driven processes typical in programmable logic controller (PLC) implementation of real-time controllers. The methodology uses a black-box approach to profile the target process using HPCs. The time series of HPC measurements over a time window under known-good operating conditions is used to train a machine learning classifier. At run-time, this trained classifier classifies the time series of HPC measurements as baseline (i.e., probabilistically corresponding to a model learned from the training data) or anomalous. The baseline versus anomalous labels over successive time windows offer robustness against the stochastic variability of code execution on the embedded processor and detect code modifications. We demonstrate effectiveness of the approach on an embedded PLC in a hardware-in-the-loop (HITL) testbed emulating a benchmark industrial process. In addition, to illustrate the scalability of the approach, we also apply the methodology to a second PLC platform running a representative embedded control process. |
---|---|
AbstractList | We propose a novel methodology for real-time monitoring of software running on embedded processors in cyber-physical systems (CPS). The approach uses real-time monitoring of hardware performance counters (HPC) and applies to multi-threaded and interrupt-driven processes typical in programmable logic controller (PLC) implementation of real-time controllers. The methodology uses a black-box approach to profile the target process using HPCs. The time series of HPC measurements over a time window under known-good operating conditions is used to train a machine learning classifier. At run-time, this trained classifier classifies the time series of HPC measurements as baseline (i.e., probabilistically corresponding to a model learned from the training data) or anomalous. The baseline versus anomalous labels over successive time windows offer robustness against the stochastic variability of code execution on the embedded processor and detect code modifications. We demonstrate effectiveness of the approach on an embedded PLC in a hardware-in-the-loop (HITL) testbed emulating a benchmark industrial process. In addition, to illustrate the scalability of the approach, we also apply the methodology to a second PLC platform running a representative embedded control process. |
Author | Khorrami, Farshad Karri, Ramesh Krishnamurthy, Prashanth |
Author_xml | – sequence: 1 givenname: Prashanth orcidid: 0000-0001-8264-7972 surname: Krishnamurthy fullname: Krishnamurthy, Prashanth email: prashanth.krishnamurthy@nyu.edu organization: Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA – sequence: 2 givenname: Ramesh orcidid: 0000-0001-7989-5617 surname: Karri fullname: Karri, Ramesh email: rkarri@nyu.edu organization: Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA – sequence: 3 givenname: Farshad orcidid: 0000-0002-8418-004X surname: Khorrami fullname: Khorrami, Farshad email: khorrami@nyu.edu organization: Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA |
BookMark | eNp9kD1PwzAURS1UJNrCD0AslphT_BHHyVgVSisVUUGYGCLHeQFXqV3sRKj_nkZFHRiY3h3ueVc6IzSwzgJC15RMKCXZXb6cv04YodmEZYwLKc_QkAqRRAlhdHDKlF-gUQgbQuKYJukQvU-t26pmj--hBd0aZ7Gx-AVUE-VmC_ipa1oT5Z8eVAUVXnunIQQI-C0Y-4EXylffygNeg6-d3yqrAc9cZ1vw4RKd16oJcPV7xyifP-SzRbR6flzOpqtIs4y3EeekTAVjRGqpKyjLOmWlIBqEBnoIIqMxSF5pkCzhQKpE0pJrKVRSC8b5GN0e3-68--ogtMXGdd4eFgvGslRSGqd9ix5b2rsQPNTFzput8vuCkqJXWPQKi15h8avwwMg_jDat6iW1XpnmX_LmSBoAOC2lksssI_wH96GArA |
CODEN | ITIFA6 |
CitedBy_id | crossref_primary_10_1109_TDSC_2022_3231632 crossref_primary_10_3390_technologies11040107 crossref_primary_10_1007_s11276_024_03833_y crossref_primary_10_1088_1742_6596_1962_1_012010 crossref_primary_10_1016_j_cose_2021_102434 crossref_primary_10_1016_j_sysconle_2021_105066 crossref_primary_10_12677_CSA_2022_1212294 crossref_primary_10_1109_TCAD_2020_3026960 crossref_primary_10_1109_TII_2020_3047416 crossref_primary_10_1016_j_comnet_2023_109967 crossref_primary_10_1016_j_cose_2024_103884 crossref_primary_10_1109_TASE_2021_3073396 crossref_primary_10_1109_JETCAS_2021_3084400 crossref_primary_10_1109_TCAD_2022_3159749 crossref_primary_10_1109_TVLSI_2022_3171174 crossref_primary_10_3390_pr11030918 crossref_primary_10_1109_JSEN_2025_3526362 crossref_primary_10_1109_MM_2023_3300713 crossref_primary_10_1016_j_ijcip_2022_100516 crossref_primary_10_1109_TDSC_2020_2973959 crossref_primary_10_1109_MDAT_2022_3143438 crossref_primary_10_1109_ACCESS_2022_3179047 crossref_primary_10_1109_TCAD_2020_3012649 crossref_primary_10_1109_TICPS_2024_3524185 crossref_primary_10_1109_JETCAS_2021_3077442 crossref_primary_10_1109_TC_2022_3146217 crossref_primary_10_1109_JSYST_2022_3186619 crossref_primary_10_1109_TIFS_2024_3420233 crossref_primary_10_1145_3476996 crossref_primary_10_1016_j_ijepes_2021_107150 crossref_primary_10_1007_s41635_024_00146_6 |
Cites_doi | 10.1007/978-3-540-35488-8 10.2172/911775 10.1016/j.ifacol.2017.08.178 10.1109/TIFS.2018.2833063 10.1109/MDAT.2016.2594178 10.1145/3125501.3125529 10.1145/2463209.2488831 10.1109/TMSCS.2016.2569467 10.1016/0098-1354(93)80018-I 10.1145/2485922.2485970 10.1145/2046707.2093511 10.1109/VLSID.2016.115 10.1109/ICCKE.2014.6993402 10.1145/2857055 10.1109/JPROC.2015.2512235 10.1017/CBO9780511811357 10.1109/ICCCN.2017.8038393 10.7551/mitpress/4175.001.0001 10.1109/TEST.2016.7805855 10.1109/TCAD.2015.2474374 10.1145/2046582.2046596 10.1016/j.ijcip.2013.05.001 10.1007/978-3-319-11379-1_6 10.23919/TRONSHOW.2017.8275073 10.1145/3052973.3052999 10.1109/GHTC.2014.6970342 10.1109/MSPEC.2013.6471059 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TIFS.2019.2923577 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1556-6021 |
EndPage | 680 |
ExternalDocumentID | 10_1109_TIFS_2019_2923577 8737990 |
Genre | orig-research |
GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency grantid: FA8750-16-C-0179 funderid: 10.13039/100000185 – fundername: Office of Naval Research; U.S. Office of Naval Research grantid: N00014-15-1-2182; N00014-17-1-2006 funderid: 10.13039/100000006 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-330b852207c7cdebbf82b50ce5ce1b505914e73dce7263e0d671b3c75a6f5233 |
IEDL.DBID | RIE |
ISSN | 1556-6013 |
IngestDate | Mon Jun 30 05:46:35 EDT 2025 Tue Jul 01 02:34:14 EDT 2025 Thu Apr 24 22:54:16 EDT 2025 Wed Aug 27 08:33:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-330b852207c7cdebbf82b50ce5ce1b505914e73dce7263e0d671b3c75a6f5233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8418-004X 0000-0001-8264-7972 0000-0001-7989-5617 |
PQID | 2298711483 |
PQPubID | 85506 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TIFS_2019_2923577 proquest_journals_2298711483 ieee_primary_8737990 crossref_primary_10_1109_TIFS_2019_2923577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationTitleAbbrev | TIFS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 (ref44) 2019 ref15 ref31 ref30 ref33 ref11 kravets (ref12) 2009 (ref7) 2015 ref2 ref1 ref16 ref19 ref18 schölkopf (ref36) 2001 hastie (ref39) 2009 xia (ref17) 2012 falliere (ref5) 2011; 5 ref46 garcia-serrano (ref24) 2015 ref23 ref26 ref25 ref20 ref42 ref41 (ref45) 2019 ref22 ref21 ref43 murphy (ref38) 2012 alam (ref29) 2018 (ref6) 2014 kovacs (ref14) 2014 ref28 robertson (ref10) 2014 ref27 bishop (ref35) 2006 (ref8) 2016 ref3 byres (ref4) 2004; 116 vapnik (ref37) 1999 blask (ref9) 2011 ref40 (ref32) 2019 |
References_xml | – ident: ref34 doi: 10.1007/978-3-540-35488-8 – ident: ref11 doi: 10.2172/911775 – ident: ref3 doi: 10.1016/j.ifacol.2017.08.178 – year: 2014 ident: ref6 publication-title: ICS-CERT year in review-2014 – ident: ref43 doi: 10.1109/TIFS.2018.2833063 – ident: ref2 doi: 10.1109/MDAT.2016.2594178 – ident: ref33 doi: 10.1145/3125501.3125529 – ident: ref18 doi: 10.1145/2463209.2488831 – ident: ref25 doi: 10.1109/TMSCS.2016.2569467 – year: 2011 ident: ref9 publication-title: ICS cybersecurity Water water everywhere – ident: ref41 doi: 10.1016/0098-1354(93)80018-I – ident: ref21 doi: 10.1145/2485922.2485970 – ident: ref16 doi: 10.1145/2046707.2093511 – ident: ref26 doi: 10.1109/VLSID.2016.115 – year: 2019 ident: ref44 publication-title: Wago Programmable Fieldbus Controllers – year: 2019 ident: ref45 publication-title: OpenPLC (Open Source PLC) – ident: ref23 doi: 10.1109/ICCKE.2014.6993402 – ident: ref19 doi: 10.1145/2857055 – year: 2018 ident: ref29 article-title: RAPPER: Ransomware prevention via performance counters publication-title: arXiv 1802 03909 – year: 2015 ident: ref24 article-title: Anomaly detection for malware identification using hardware performance counters publication-title: arXiv 1508 07482 – year: 1999 ident: ref37 publication-title: The Nature of Statistical Learning Theory – year: 2014 ident: ref14 publication-title: Cyberattack on german steel plant caused significant damage – ident: ref1 doi: 10.1109/JPROC.2015.2512235 – year: 2009 ident: ref12 publication-title: Feds Hacker disabled offshore oil platforms' leak-detection system – year: 2016 ident: ref8 publication-title: ICS-CERT Year in Review – ident: ref40 doi: 10.1017/CBO9780511811357 – ident: ref31 doi: 10.1109/ICCCN.2017.8038393 – year: 2001 ident: ref36 publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond doi: 10.7551/mitpress/4175.001.0001 – ident: ref42 doi: 10.1109/TEST.2016.7805855 – year: 2012 ident: ref38 publication-title: Machine Learning A Probabilistic Perspective – ident: ref20 doi: 10.1109/TCAD.2015.2474374 – ident: ref15 doi: 10.1145/2046582.2046596 – start-page: 1 year: 2012 ident: ref17 article-title: CFIMon: Detecting violation of control flow integrity using performance counters publication-title: Proc IEEE/IFIP Int Conf Dependable Syst Netw – volume: 116 start-page: 213 year: 2004 ident: ref4 article-title: The myths and facts behind cyber security risks for industrial control systems publication-title: proceedings of the VDE-Congress – ident: ref30 doi: 10.1016/j.ijcip.2013.05.001 – volume: 5 year: 2011 ident: ref5 publication-title: W32 stuxnet Dossier – ident: ref22 doi: 10.1007/978-3-319-11379-1_6 – year: 2006 ident: ref35 publication-title: Pattern Recognition and Machine Learning – year: 2014 ident: ref10 publication-title: Mysterious '08 Turkey pipeline blast opened new cyberwar – ident: ref28 doi: 10.23919/TRONSHOW.2017.8275073 – year: 2019 ident: ref32 publication-title: Papi - the performance application programming interface – year: 2009 ident: ref39 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – ident: ref27 doi: 10.1145/3052973.3052999 – year: 2015 ident: ref7 publication-title: Nccic/ics-cert year in review 2015 – ident: ref46 doi: 10.1109/GHTC.2014.6970342 – ident: ref13 doi: 10.1109/MSPEC.2013.6471059 |
SSID | ssj0044168 |
Score | 2.4230797 |
Snippet | We propose a novel methodology for real-time monitoring of software running on embedded processors in cyber-physical systems (CPS). The approach uses real-time... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 666 |
SubjectTerms | Anomalies Anomaly detection Classifiers cyber security Cyber-physical systems Embedded systems Hardware Hardware-in-the-loop simulation Machine learning Malware Methodology Microprocessors Monitoring Process control Program processors programmable logic controller Programmable logic controllers Real time Real-time systems resilient control Time measurement Time series Time series analysis Windows (intervals) |
Title | Anomaly Detection in Real-Time Multi-Threaded Processes Using Hardware Performance Counters |
URI | https://ieeexplore.ieee.org/document/8737990 https://www.proquest.com/docview/2298711483 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PaxUxEB7anurB2lbxaVty6EnMazbZbDbHYvuohZaiTyh4WPJjFqR1n7T7EP3rTbLZp1URbzkkEPiSmfmS-WYADotWeYm8pNZrQ0uLFa1bNLQt0ZXeGlXbVO3zsjr7UJ5fy-s1eL3SwiBiSj7DaRymv3y_cMv4VHZUK6GC9VyH9UDcBq3WaHWDVx9kb1JWNJAMkX8wC6aP5m9n72MSl55yHau7qAc-KDVV-cMSJ_cy24KLcWNDVsnNdNnbqfv-W83G_935E3ic40xyPByMbVjDbge2xh4OJF_pHXj0S0HCXfh43C0-m9tv5AT7lKPVkU8deReCSRq1IiTJdek84G88epJVBnhPUuYBiWkAX80dkqufcgQSVe-xhOdTmM9O52_OaG6_QF2IAXoqBLN1CM-Ycsp5tLatuZXMoXRYhIHURYlKeIeKVwKZr1RhhVPSVG2gt-IZbHSLDp8DsdyaEAeZVrrgDLnSrPSKaSvQOu2knQAb8WhcLk0eO2TcNomiMN1ECJsIYZMhnMCr1ZIvQ12Of03ejZCsJmY0JrA3gt7km3vfcK4DhwwkUbz4-6qXsMkj507PMHuw0d8tcT8EJr09SCfyB9VL4Ek |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PaxQxFH7UelAPVluLW1vNwZOYbSaZTCbHYrtstS2iIxQ8DJPkDYh1VtpZiv71JpnMqlXEWw4JBL7k_Uje9z2A51mrnESeU-N0Q3ODBS1bbGibo82daVRpotrnWTH_kL8-l-dr8HLFhUHEWHyG0zCMf_luYZfhqWy_VEJ563kLbnu_L7OBrTXaXe_XB-KblAX1aYZIf5gZ0_vV8ex9KOPSU66Dvov6zQvFtip_2OLoYGYbcDpubagr-Txd9mZqv99QbfzfvT-A-ynSJAfD0XgIa9htwsbYxYGkS70J936RJNyCjwfd4ktz8Y0cYh-rtDryqSPvfDhJA1uERMIurfwJaBw6kngGeEVi7QEJhQDXzSWStz8JCSTw3oOI5yOoZkfVqzlNDRio9VFAT4VgpvQBGlNWWYfGtCU3klmUFjM_kDrLUQlnUfFCIHOFyoywSjZF6xNcsQ3r3aLDx0AMN42PhJpWWu8OudIsd4ppI9BYbaWZABvxqG0SJw89Mi7qmKQwXQcI6wBhnSCcwIvVkq-DMse_Jm8FSFYTExoT2B1Br9Pdvao51z6L9Gmi2Pn7qmdwZ16dntQnx2dvnsBdHjLw-CizC-v95RL3fJjSm6fxdP4Asb3jkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+in+Real-Time+Multi-Threaded+Processes+Using+Hardware+Performance+Counters&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Krishnamurthy%2C+Prashanth&rft.au=Karri%2C+Ramesh&rft.au=Khorrami%2C+Farshad&rft.date=2020&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=15&rft.spage=666&rft.epage=680&rft_id=info:doi/10.1109%2FTIFS.2019.2923577&rft.externalDocID=8737990 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |