Finite-Time Stabilization of a Collection of Connected Vehicles Subject to Communication Interruptions
This paper investigates a platooning problem of connected vehicles subject to communication interruptions and latency. For a heterogeneous platoon of vehicles, a hybrid reference model with cooperative adaptive cruise control (CACC) and adaptive cruise control (ACC) is established. Then a novel CACC...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 8; pp. 10627 - 10635 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigates a platooning problem of connected vehicles subject to communication interruptions and latency. For a heterogeneous platoon of vehicles, a hybrid reference model with cooperative adaptive cruise control (CACC) and adaptive cruise control (ACC) is established. Then a novel CACC-ACC switching control method is suggested, which activates either a CACC scheme or an augmented ACC strategy depending on the status of communications. By introducing a platoon state tracking error system, a control algorithm is derived using finite-time sliding-mode control theory, which can robustly guarantee string stability and zero steady-state spacing error of the vehicular platoon. Simulations have shown the effectiveness and superiority of the method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2021.3095147 |