A Two-Stage Parameter Optimization Method for Capacitive Power Transfer Systems

Wireless power transfer (WPT) is more convenient and safer than conductive charging for power consumer electronics, biomedical devices, transportation systems, etc. Inductive power transfer is the most widely studied and commercialized WPT technique; however, capacitive power transfer (CPT) is becom...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 37; no. 1; pp. 1102 - 1117
Main Authors Xia, Jinglin, Yuan, Xinmei, Lu, Sizhao, Li, Jun, Luo, Shuling, Li, Siqi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wireless power transfer (WPT) is more convenient and safer than conductive charging for power consumer electronics, biomedical devices, transportation systems, etc. Inductive power transfer is the most widely studied and commercialized WPT technique; however, capacitive power transfer (CPT) is becoming an attractive alternative, offering better misalignment tolerance and lower cost and weight. The electrical-field-resonance-based six-plate coupler system is one of the most typical configurations for high-performance CPT systems, but the associated large number of circuit parameters is always a critical issue for system design. In this article, a parameter optimization method is proposed for this topology. The ratio of the reactive power in the compensation network to the system transferred power is set as the main optimization goal. To solve the high-order optimization problem, a two-stage method is proposed to significantly reduce the optimization complexity while providing the optimized parameters of the whole system. To verify the effectiveness of this method, a 3-kW, 1-MHz CPT system with a 16-pF coupling capacitor is built. Both the simulation and experimental results show that the optimized parameters effectively improve the system efficiency, experimentally achieving 95.7% dc-dc overall efficiency under a 100-mm gap distance at the rated power.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2021.3097344