Hybrid Reinforcement Learning for STAR-RISs: A Coupled Phase-Shift Model Based Beamformer

A simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted multi-user downlink multiple-input single-output (MISO) communication system is investigated. In contrast to the existing ideal STAR-RIS model assuming an independent transmission and reflection phase-s...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 40; no. 9; pp. 2556 - 2569
Main Authors Zhong, Ruikang, Liu, Yuanwei, Mu, Xidong, Chen, Yue, Wang, Xianbin, Hanzo, Lajos
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted multi-user downlink multiple-input single-output (MISO) communication system is investigated. In contrast to the existing ideal STAR-RIS model assuming an independent transmission and reflection phase-shift control, a practical coupled phase-shift model is considered. Then, a joint active and passive beamforming optimization problem is formulated for minimizing the long-term transmission power consumption, subject to the coupled phase-shift constraint and the minimum data rate constraint. Despite the coupled nature of the phase-shift model, the formulated problem is solved by invoking a hybrid continuous and discrete phase-shift control policy. Inspired by this observation, a pair of hybrid reinforcement learning (RL) algorithms, namely the hybrid deep deterministic policy gradient (hybrid DDPG) algorithm and the joint DDPG & deep-Q network (DDPG-DQN) based algorithm are proposed. The hybrid DDPG algorithm controls the associated high-dimensional continuous and discrete actions by relying on the hybrid action mapping. By contrast, the joint DDPG-DQN algorithm constructs two Markov decision processes (MDPs) relying on an inner and an outer environment, thereby amalgamating the two agents to accomplish a joint hybrid control. Simulation results demonstrate that the STAR-RIS has superiority over other conventional RISs in terms of its energy consumption. Furthermore, both the proposed algorithms outperform the baseline DDPG algorithm, and the joint DDPG-DQN algorithm achieves a superior performance, albeit at an increased computational complexity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2022.3192053