Performance Analysis for Multihop Cognitive Radio Networks With Energy Harvesting by Using Stochastic Geometry

Cognitive multihop relaying has been widely considered for device-to-device (D2D) communications for applications in the physical layer of the Internet of Things. In this article, we construct a multihop cellular D2D communications system model with energy harvesting (EH) in underlay cognitive radio...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 7; no. 2; pp. 1154 - 1163
Main Authors Ge, Lu, Chen, Gaojie, Zhang, Yue, Tang, Jie, Wang, Jintao, Chambers, Jonathon A.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cognitive multihop relaying has been widely considered for device-to-device (D2D) communications for applications in the physical layer of the Internet of Things. In this article, we construct a multihop cellular D2D communications system model with energy harvesting (EH) in underlay cognitive radio networks. The locations of primary user equipments (PUEs) and cellular base stations are considered as a Poisson point process in this model. The transmit power of secondary devices is collected from the power beacon with time-switching EH policy. Two charging policies for different applications are considered in this article. Then, the end-to-end outage probability analysis expressions of these two scenarios for the transmission scheme subject to interferences from PUEs are derived. The optimal harvesting time ratio is obtained to get the maximum capacity for end-to-end D2D communications. The analytical results are validated by performing the Monte Carlo simulation of the end-to-end outage probability, which is based on the half-duplex transmission scheme. The results of this article provide a potential pathway to reduce reliance on grid or battery energy supplies and, hence, further strengthen the benefits for the environment and deployment of future smart devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2019.2953130