Constructing Completely Independent Spanning Trees in Data Center Network Based on Augmented Cube

A set of spanning trees <inline-formula><tex-math notation="LaTeX">T_1,T_2,\ldots, T_k</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 32; no. 3; pp. 665 - 673
Main Authors Chen, Guo, Cheng, Baolei, Wang, Dajin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A set of spanning trees <inline-formula><tex-math notation="LaTeX">T_1,T_2,\ldots, T_k</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>T</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:mo>...</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mi>T</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq1-3029654.gif"/> </inline-formula> in a network <inline-formula><tex-math notation="LaTeX">G</tex-math> <mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="cheng-ieq2-3029654.gif"/> </inline-formula> are Completely Independent Spanning Trees (CISTs) if for any two nodes <inline-formula><tex-math notation="LaTeX">u</tex-math> <mml:math><mml:mi>u</mml:mi></mml:math><inline-graphic xlink:href="cheng-ieq3-3029654.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">v</tex-math> <mml:math><mml:mi>v</mml:mi></mml:math><inline-graphic xlink:href="cheng-ieq4-3029654.gif"/> </inline-formula> in <inline-formula><tex-math notation="LaTeX">V(G)</tex-math> <mml:math><mml:mrow><mml:mi>V</mml:mi><mml:mo>(</mml:mo><mml:mi>G</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq5-3029654.gif"/> </inline-formula>, the paths between <inline-formula><tex-math notation="LaTeX">u</tex-math> <mml:math><mml:mi>u</mml:mi></mml:math><inline-graphic xlink:href="cheng-ieq6-3029654.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">v</tex-math> <mml:math><mml:mi>v</mml:mi></mml:math><inline-graphic xlink:href="cheng-ieq7-3029654.gif"/> </inline-formula> in any two trees have no common edges and no common internal nodes. CISTs have important applications in data center networks, such as fault-tolerant multi-node broadcasting, fault-tolerant one-to-all broadcasting, reliable broadcasting, secure message distribution, and so on. The augmented cube <inline-formula><tex-math notation="LaTeX">AQ_n</tex-math> <mml:math><mml:mrow><mml:mi>A</mml:mi><mml:msub><mml:mi>Q</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq8-3029654.gif"/> </inline-formula> is a prominent variant of the well-known hypercube <inline-formula><tex-math notation="LaTeX">Q_n</tex-math> <mml:math><mml:msub><mml:mi>Q</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="cheng-ieq9-3029654.gif"/> </inline-formula>, and having the important property of scalability, and both <inline-formula><tex-math notation="LaTeX">Q_n</tex-math> <mml:math><mml:msub><mml:mi>Q</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="cheng-ieq10-3029654.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">AQ_n</tex-math> <mml:math><mml:mrow><mml:mi>A</mml:mi><mml:msub><mml:mi>Q</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq11-3029654.gif"/> </inline-formula> have been proposed as the underlying structure for a data center network. The data center network based on <inline-formula><tex-math notation="LaTeX">AQ_n</tex-math> <mml:math><mml:mrow><mml:mi>A</mml:mi><mml:msub><mml:mi>Q</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq12-3029654.gif"/> </inline-formula> is denoted by <inline-formula><tex-math notation="LaTeX">AQDN_n</tex-math> <mml:math><mml:mrow><mml:mi>A</mml:mi><mml:mi>Q</mml:mi><mml:mi>D</mml:mi><mml:msub><mml:mi>N</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq13-3029654.gif"/> </inline-formula>, and the logic graph of <inline-formula><tex-math notation="LaTeX">AQDN_n</tex-math> <mml:math><mml:mrow><mml:mi>A</mml:mi><mml:mi>Q</mml:mi><mml:mi>D</mml:mi><mml:msub><mml:mi>N</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq14-3029654.gif"/> </inline-formula> is denoted by <inline-formula><tex-math notation="LaTeX">L\text{-}AQDN_n</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mtext>-</mml:mtext><mml:mi>A</mml:mi><mml:mi>Q</mml:mi><mml:mi>D</mml:mi><mml:msub><mml:mi>N</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq15-3029654.gif"/> </inline-formula>. In this article, we study how to construct <inline-formula><tex-math notation="LaTeX">n-1</tex-math> <mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq16-3029654.gif"/> </inline-formula> CISTs in <inline-formula><tex-math notation="LaTeX">L\text{-}AQDN_n</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mtext>-</mml:mtext><mml:mi>A</mml:mi><mml:mi>Q</mml:mi><mml:mi>D</mml:mi><mml:msub><mml:mi>N</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq17-3029654.gif"/> </inline-formula>. The constructed <inline-formula><tex-math notation="LaTeX">n-1</tex-math> <mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq18-3029654.gif"/> </inline-formula> CISTs are optimal in the sense that <inline-formula><tex-math notation="LaTeX">n-1</tex-math> <mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq19-3029654.gif"/> </inline-formula> is the maximally allowed CISTs in <inline-formula><tex-math notation="LaTeX">L\text{-}AQDN_n</tex-math> <mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mtext>-</mml:mtext><mml:mi>A</mml:mi><mml:mi>Q</mml:mi><mml:mi>D</mml:mi><mml:msub><mml:mi>N</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq20-3029654.gif"/> </inline-formula>. The correctness of our construction algorithm is proved. It is the first time a direct relationship is established between the dimension of a hypercube-family network and the number of CISTs it can host.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2020.3029654